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The work presented in this text is part of a doctorial dissertation in mathematics 

education (Ba 2006) about the teaching and learning of vectors, translations, forces, 

velocity and movement of translation in mathematics and physics. Here, we present 

the evolution of the teaching of vectors and vector quantities in mathematics and 

physics from the end of the 19
th

 century up to now. We analyse this evolution in the 

light of the ecology of knowledge, as developed by Yves Chevallard (1994). This 

helps us understand the difficulties in recent periods, in order to create a successful 

interdisciplinary approach in the teaching of these notions in mathematics and 

physics. 

 

INTRODUCTION 

Vectors emerged during the 19th century at the border of mathematics and physics. 
We will not recall here their historical evolution (see e. g. CROWE 1967, DORIER 
1997 and 2000, FLAMENT 1997 and 2003). Our interest is clearly into the history of 
their teaching in the curricula of both mathematics and physics in France since the 
end of the 19th century. Today, in France, vectors in mathematics occupy a small part 
of the curriculum of geometry in secondary education (8th to 12th grades), while 
vector quantities are taught in Physics in 11th and 12th grades. Introducing an 
interdisciplinary approach has been suggested in recent programs, but is yet not very 
successful, as shown by our study of textbooks and teachers’ practices (BA 2006, BA 
& DORIER 2007). The bad effects of partitioning in curricula between mathematics 
and physics teaching has been pointed out, especially about vectors, by several 
authors (see LOUNIS 1989 for a review). In this context, our aim is to understand 
how such a partitioning has been made possible, in order to find a way to make the 
interrelation between mathematics and physics teaching better. 

The ecological approach developed by CHEVALLARD (1994), is a theoretical tool 
proper to help us tackle this issue. Indeed, it allows to study the different positions 
and functions of vectors and vector quantities in the moving landscape of 
mathematics and physics teaching, with conditions and constraints for survival and 
development. The idea is to analyse the evolution of objects of knowledge in various 
(didactic) institutions like organisms in various ecosystems. 
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The ecologists distinguish, when referring to an organism, its habitat and its niche. To put 
it in an anthropomorphic way, the habitat is, in a way, the address, the place where it 
lives. The niche regroups the functions that the organism fulfils. It is, in a way, its 
profession in this habitat1. (Op. cit., p. 142). 

Following CHEVALLARD, ARTAUD (1997) analyses under which conditions new 
objects can emerge and live in an ecosystem.  

For a new object of knowledge O to emerge in a didactical ecosystem, it is necessary that 
a certain milieu exists for this object, i.e. a set of known objects (in the sense that a non 
problematic institutional relation exists) with which O comes in interrelation. […] A 
mathematical object cannot exist on its own; it must be able to occupy a specific position 
in a mathematical organisation, that has to be brought to life. The necessity for a milieu 
implies that a new mathematical organisation cannot emerge ex nihilo. It must lean on 
already existing mathematical or non-mathematical organisationsi. (Op. cit., p. 124). 

The ecological approach consists therefore in bringing to light a network of 
conditions and constraints that determines the evolution of the positions that objects 
(vectors in our work) can have in the different periods corresponding to changes in 
the programs. In this perspective, we have to take into account various institutions 
(and their specific constraints): school in general, but also mathematicians and 
physicists.   

We do it chronologically from 1852 up to today, according to various phases, 
corresponding to the main teaching reforms. 

THE BEGINNINGS (1852-1925) 

In 1852, techniques for obtaining the resultant of two forces is taught in physics in 
11th grade (age 17). There is a reference to the parallelogram of forces, but no vectors 
as such, just a technique based on a geometrical pattern. The same year the term 
radius vector (rayon vecteur) is used in geometry. This comes from astronomy, where 
the radius vector designates the segment joining one of the foci of the ellipse 
describing a planet’s trajectory to its position on the orbit. It has therefore not much 
to do with what we call a vector now. 

Until 1902, vector and vector quantities are absent from French secondary teaching 
both in mathematics and physics. In 1902, the radius vector disappears, but the 
vector, as a directed line segment appears in the program of 11th grade in mechanics 
and kinematics, part of mathematics then. Meanwhile, in 9th grade too, in statics and 
dynamics, the scalar product is used to calculate the work done by a force. Therefore 
vectors enter the curriculum in 11th grade in the habitat of what we can call 
“paraphysics”2, with a niche as representations of orientated quantities. This is 
coherent with their origin and use in science of that time. It is also coherent with the 
general aims of the 1902 reform, which promotes mathematics as the root of natural 
sciences. Moreover, the 1902 reform insists on collaborations between mathematics 
and physics teachers:  
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It would be good that [...] mathematics and physics teachers in the same school support 
each other mutually. Physics teachers must always know at what stage of mathematics 
knowledge are their students and conversely mathematics teachers would gain in not 
ignoring some examples that they could choose, in the experimental knowledge already 
acquired, in order to illustrate the theories they have explained in an abstract way. 
(Introduction to Programmes du lycée, 1902, p.3) 

The 1902 reform is quite ambitious and gives to the sciences and mathematics in 
particular a privileged position. A result of this ambition is that the curriculum is too 
important, therefore teachers complain that it is impossible to cover everything. In 
1905, the ministry of education has to reduce the program. In this technical 
adaptation, vectors are moved from 11th to 12th grade and enter a new habitat, since 
they are now part of the geometry curriculum, where they have to be presented as 
tools for physics (their niche): 

In mechanics, […] teachers must avoid any development on purely geometrical aspect; it 
is in order to suppress any such occasion, that theorems on vectors have been reduced to 
a minimum and moved in the geometry curriculum, where they appear under their real 
aspecti. (Instruction du 27 juillet 1905 relative à l’enseignement des mathématiques, p. 
676) 

Vectors are therefore transported from mathematical physics into geometry, in order 
to technically solve a purely didactical problem.  

In 1925, without being explicitly in the program, vectors appear in the 9th grade, as a 
possible concrete representation of “algebraic numbers”, “concrete notions on 
positive and negative numbers”. This is a new potential habitat in arithmetics, as 
representations of one-dimensional orientated quantities (their niche). Here again, the 
reasons are mostly of didactical order. 

In 12th grade, the content about vectors remains more or less the same than during the 
preceding period. Yet, vectors have migrated into trigonometry, for which they 
facilitate the didactical presentation. In kinematics, the use of vectors to represent 
velocity and acceleration is more systematic, like in mechanics, with forces. The 
habitat and niche in physics are therefore reinforced. Meanwhile, a comment in the 
program in 1925 is quite interesting: 

In statics, the confusion that happened very often between the properties of systems of 
forces and those of associated systems of vectors, will disappear because of the general 
study of the latter. 

Therefore the geometrical status of vector is reinforced, so is their niche in this 
habitat, due to the new connection with trigonometry.  

In a bit more than 20 years, fore purely didactical reasons, vectors initially hybrid 
objects at the border between physics and mathematics, acquired a geometrical status 
and a potential arithmetical one. Their use in physics is not anymore essential, since 
they have to be introduced separately. 



 

 

 

6 

A SLOW EVOLUTION (1937-1967) 

In 1937, the use of vectors to represent algebraic numbers in 9th grade is made 
official, and the projection of parallel vectors on the same axis is suggested as a 
means to illustrate the multiplication of numbers with a sign. In the same vein, 
vectors are used in the presentation of homotheties. The arithmetical habitat is 
therefore reinforced. 

The habitat in trigonometry remains but is moved down to 11th grade. 

Habitats and niches are therefore identical. Clearly one-dimensional vectors live in 
arithmetic for the 9th grade, where multiplication by a scalar is important, while 
higher dimensional vectors are introduced in the 11th grade in trigonometry. The 
habitat in physics appears later, but more systematically, as an application. No 
mention of possible bridges between the different habitats is made, while difficulties 
in the use of vectors in physics are noticed officially. 

In 1947, there are no major changes. For the first time, vectors are used to present a 
vector version of Thales’ theorem in the 9th grade, following the use of vectors for 
homotheties. In the 11th grade, vectors are now a separate chapter in geometry, no 
longer part of trigonometry. The term of equipollent vector is introduced, and the link 
with translation is made. 

Therefore, vectors have now gained an autonomous mathematical status. The 
dichotomy between arithmetics (one dimension) and geometry (higher dimension) 
still exists. Yet, Thales’ theorem makes a bridge between the two habitats, and put 
forward the multiplication by a scalar, which originally was not very important in the 
use for physics. 

In 1957, the potential bridge between the arithmetical and geometrical habitat is 
made. Vectors appear in the 9th grade, in geometry, in relation with proportional 
transformations and Thales’ theorem: the arithmetic habitat has been absorbed into 
geometry. In the 10th grade, 3 dimensional directed line segments are introduced as 
part of the geometry curriculum, in relation with translations and analytic geometry. 
In the 11th grade, the distinction between directed line segments and free vectors is 
made. Applications to geometry and kinematics are important. Barycentres also 
appear for the first time and are linked to vectors. The geometric habitat is therefore 
stronger and has absorbed the arithmetic habitat, which only survive in a transitory 
phase in the 9th grade. In this enlarged geometric habitat, the niche is not anymore the 
representation of vector quantities from physics, but more an efficient tool for solving 
geometrical problems. For educational purposes, vectors have therefore become 
geometrical objects. They are used to introduce analytic geometry and barycentres, 
two fields of geometry that historically existed before vectors! 

In physics, in 12th grade, vectors are also used in magnetism, yet mostly through 
representation by coordinates. This, again, is quite ironical, compared to the historical 
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development, when one recalls that Maxwell’s formulae played an important role in 
the history of vectors, to impose the coordinate-free notations! 

MODERN MATHEMATICS (1968-1985) 

In the enormous changes brought by modern mathematics, geometry teaching was to 
be profoundly renewed. Vectors were introduced in 7th grade, very formally. In 9th 
grade, the axiomatic structure of vector space was defined, yet limited to finite 
dimensions. In his history of linear algebra, Dorier (1997 or 2000a) has shown that 
the model of geometrical space, as the Euclidean three-dimensional vector space has 
been promoted by Dieudonné (1964) because, in his mind, it was the best preparation 
for the Hilbert and more general function spaces, which were important in the 
curriculum for post graduates in mathematics. Indeed, promoters of modern 
mathematics (among whom Dieudonné was one of the most radical) had a 
descending view of mathematics education: students had to be trained as young as 
possible to ideas that were essential to professional mathematicians. In this 
perspective, introducing geometry through vectors made possible to introduce the 
structure of Euclidean vector space very early. “Geometrical vectors” became then 
the (quasi unique) prototype of Euclidean vector spaces. Yet, this is a reduction and a 
deviation from the historical genesis. 

[…] the nature of the geometrical vector […] is the outcome of a dialectical perspective 
between algebraic structure and geometric intuition. It has to be underlined here that the 
expression “algebraic structure” does not mean that the geometrical vector is essentially 
the emergence of the theory of vector space in geometry. Indeed, one should not be 
misled by the proximity of vocabulary. The theory of vector space is by nature axiomatic, 
algebraic vectors (elements of a vector space) are not constructed, they are given objects 
defined only by their properties as element of a structure. Geometrical vectors on the 
contrary are the result of a dynamic process of abstraction: the object is created through 
an algebraic elaboration in interaction with geometric intuition. Moreover, the roles of 
vector and scalar products have been essential in the genesis of geometrical vector, 
whereas the linear structure put forward the multiplication by a scalar, which is not 
essential with regard to geometrical vectorsi. (DORIER 2000b, pp. 76-77) 

A totally new mathematical organisation took place in geometry, in which vectors 
were central. But the nature of vectors was also changed, they became mostly 
examples of linear algebra theory. Therefore, a new niche appeared in the habitat of 
geometry: preparation of students to linear algebra, which was taught from 10th grade, 
up to post-graduate level (functional analysis). Vectors were also used in Physics, but 
the gap between formal objects and applications got very important and many 
students had difficulties: 

The coordination mathematics-physics is getting complicated: in addition to the time lag 
between mathematics teaching and the needs of physics teaching there is a gap between 
modern mathematics taught and applicable mathematics used in the teaching of physics. 
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Thus, a group will be constituted at the junction between the Laguarrigue and the 
Lichnerowicz commissions3.i (BELHOSTE, GISPERT & HULIN 1996, p. 112) 

Research works in physics education in the seventies pointed out several difficulties 
in the use of mathematics in physics, especially regarding vectors. MALGRANGE, 
SALTIEL & VIENNOT (1973) for instance interviewed students entering university 
and pointed out that a correct use of addition of vectors about forces or velocities was 
a major problem. 

However, it is well known that the reform was quickly criticised and rejected. 

A reform conducted by tertiary education for its own sake and interest without any clear 
vision of missions specific to secondary education, was certainly bound to fail right from 
the beginning, whatever was its scientific legitimacy and its promoters’ good will. 
(BELHOSTE, GISPERT & HULIN 1996, p. 37) 

In the late seventies, some modifications were adopted, but it is only in the early 
eighties, that a total reconstruction of the curricula took place. 

THE COUNTER REFORM (1985-2002) 

Following the failure of introduction of modern mathematics, in 1985 the teaching of 
vector space theory disappears from secondary education, replaced by a more 
concrete approach to geometry. The new program specifies: “vectors should not be 
only algebraic entities; mastering their relations with configurations play an essential 
role in the solving of geometric problems”.  

This eludes the fact that vectors are intrinsically algebraic, and that this algebraic nature 
does not refer just to the theory of vector space. Operations on geometrical vectors are 
part of their constitution as objects : 

- Magnitude is the basis of arithmetic since Ancient Greeks. 
- Orientation on the same line is what allows considering negative entities, a 

decisive step towards addition. 
- Direction finally comes from the necessity of multiplication. 

This last idea is the most complicated to understand. But, let us look at what is vector 
multiplication. In Greek algebraic geometry, the product of two numbers (lines) is the 
rectangle’s area. If one considers a parallelogram instead of a rectangle, the sine of the 
angle formed by the two lines has to be taken into account in the formula for the area, i.e. 
the relative position of the two lines (the idea of negative implies to take into account the 
orientation of the lines). Thus, like Grassmann (1844) underlines it, in his introduction to 
the Ausdehnungslehre, the parallelogram, not the rectangle, symbolises the true concept 
of multiplication, if one considers orientated entities in geometry. This brings to light the 
importance of direction of lines in the construction of the producti. (DORIER 2000b, pp. 
79-80). 

As a consequence of the rejection of any formal viewpoint in the teaching of vectors, 
these appear as tools for solving geometric problems, and eventually for physics, but 
have no clear status as objects. Even the use of vectors to illustrate operation on one-
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dimensional orientated quantities has disappeared. After the rejection of modern 
mathematics, the teaching of vector is lacking of theoretical reference. The model of 
linear algebra has been banished but nothing came in the place. Yet, some residues 
remain in few places. For instance it is still common today in textbooks for 10th 
grade, to show that vectors have some properties, which are actually the axioms of 
vector space (but it is not explicit).  

Since the counter-reform in France, vectors are introduced in a naïve way in relation 
with translation. This viewpoint is not new, it has been developed for instance by 
Jacques HADAMARD (1898) in his Leçons de géométrie: 

If by all the points of a figure, one draws equal parallel lines with the same orientation, 
the end points of these lines constitutes a figure equal to the original. […] The operation 
through which one passes from the first to the second figure was given the name of 
translation. One sees that a translation is determined when a line is given in magnitude, 
direction and orientation such as AA’, which goes from one point to its homologue. Thus 
a translation is designated by the letter of such a line: e.g. the translation AA’

i. (op. cit., p. 
51). 

The vector first introduced in the 8th grade, finally got introduced only in the 9th 
grade. Moreover, in recent years, the content about vectors has been reduced to a 
minimum. The link with physics is promoted in the programs. But, as our survey of 
textbooks and teachers’ practices (BA 2007) showed, it is very limited and very often 
not effective. On the other hand, vectors are used in physics to represent forces and 
velocity, but physics teachers keep complaining that their students are not competent 
enough with vectors. 

In this last period, the habitat of vectors has been reduced to a small part in geometry. 
They are presented as efficient tools to solve geometric problems and models for 
forces and velocity. These niches however have difficulty in surviving. Indeed, 
several research works in mathematics education (e.g. BITTAR 1998, LE THI HOAI 
1997, PRESSIAT 1999) have shown the difficulty in convincing students of the 
power of vectors for solving geometric problems. On the other hand, the distance and 
partitioning between mathematics and physics teaching makes the interrelation 
difficult. In our work, we have studied this problem not only about vectors but also 
about translations and movement of translation (BA & DORIER 2007). 

CONCLUSION 

Despite the rejection of modern mathematics in the eighties, the model of linear 
algebra, even if it has disappeared from secondary education, remains implicitly the 
only algebraic model for vectors, influencing the mathematical organisation of the 
teaching of vectors. In this sense, the multiplication by a scalar is overestimated 
while, on the contrary, the vector product is underestimated. The axioms of vector 
spaces appear implicitly, while algebraic aspects more specific to geometric vectors 
are eluded, like the link with Thales’ theorem and one-dimensional orientated 



 

 

 

10 

quantities. The vanishing of any algebraic habitat or niche is like something missing 
after the (well founded) rejection of linear algebra. A reflection on the true algebraic 
nature of geometric vector and its link with geometric intuition is totally absent of the 
teaching of vector, since the beginning, while it had been an essential aspect in the 
genesis of vectors. 

The niche “efficient tool for solving geometric problems” is quite problematic. It is 
indeed difficult to find geometric problems, accessible to students in 10th grade, in 
which vectors appear really as more efficient than more basic geometric methods. 
Moreover, our study of the evolution of the teaching of vectors shows that the 
geometric habitat was not “natural” at the beginning. From its origin as hybrid 
objects between mathematics and physics, vectors have been transformed, in a 
didactical process of transposition, into geometric entities. We have shown that 
several changes between 1925 and the beginning of modern mathematics have been 
motivated by purely didactical (not epistemological) constraints. Ideology on 
teaching and practical reasons often (if not always) have surpassed scientific motives. 
The changes occurred during the reform of modern mathematics are even more 
obviously driven by ideology and subject to suspicion on epistemological grounds. 

The niche “tool for physics’ entities” remains throughout the century up to now. Yet, 
our analysis of the evolution of the teaching of vectors shows that the gap between 
habitats in mathematics and in physics has constantly grown bigger. Until the sixties, 
parts of mechanics and kinematics constituted a common ground between 
mathematics and physics where vectors were used. Even then, an artificial separation 
was made and vectors got “rejected” in geometry. In today’s mathematics textbooks, 
the examples taken from physics to illustrate the use of vectors are mostly inaccurate 
and often wrong from a physicist’s viewpoint, while physics teachers refuse to do 
mathematics and expect mathematical tools to be at disposal in time (BA & DORIER 
in press).  

For the interrelations between mathematics and physics teaching to get better, 
changes in the curricula will be necessary, but it will not be sufficient. For each 
subject capable of strengthening the relations between mathematics and physics, an 
epistemological analysis has to be conducted in order to make the adequate changes. 
Our claim is that this study must take into account the historical evolution of the 
concepts at stake AND the evolution of the teaching of these concepts, with a 
description of the constraints of the educational context. Such analyses must be the 
bases for teaching experimented completed by didactical analysis. Finally specific 
teachers’ training is necessary, in order to make the changes possible. 
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GEOMETRY TEACHING IN ICELAND IN THE LATE 1800S AND 
THE VAN HIELE THEORY 

Kristín Bjarnadóttir 

University of Iceland – School of Education 

The main issue of the paper is the first Icelandic textbook in geometry, published in 

1889, and its declared aim to avoid formal proofs. In the late 19
th

 century, there were 

discussions in Europe about geometry instruction; if it should be taught as purely 

deductive science or built on experimental and intuitive thinking. Icelandic 

intellectuals stayed outside mainstreams of philosophical and didactic discussions, 

while their policy was to enhance strategies to lead their country towards 

independence and technical progress. In the paper these discussions are connected to 

the van Hiele theory on geometric thinking.  

INTRODUCTION 

Iceland has a well recorded history of its educational and cultural issues since its 
settlement around 900 AD. A great collection of literature of various kinds exists 
from the 12th–14th century. Among that is literature of encyclopaedic nature, which 
contains some mathematics, mainly arithmetic and chronology. There is little 
evidence that geometry of the Elements was ever studied in the two cathedral schools 
in Iceland in the period from the 12th to the early 19th century, while astronomical 
observations and geodetic measurements were made in the 1500s, 1600s and 1700s 
by local people who had studied at Northern-European universities. 

Iceland became a part of the Danish Realm by the end of the 14th century. The two 
cathedral schools were united into one state school in 1802. Their goal was to prepare 
their pupils for priesthood and for studies at the University of Copenhagen.  

From the middle of the 19th century there were increased demands for independence 
from Denmark. Detailed proposals were written on schools for farmers and a lower 
secondary school for the middle class as means towards raising educational standards 
of a future independent nation. Classical geometry was to be provided for those 
heading for university entrance, while practical measuring skills and geodesy were 
proposed for future farmers. 

As a milestone towards independence, the Icelandic parliament became a legislative 
body in 1874; an event followed up with legislation in 1880 on teaching children 
arithmetic and writing, which was, as reading since the 1740s, the responsibility of 
the families under the supervision of the parish priests until the early 20th century.  

Another milestone was a public lower secondary school, run by the state, established 
in 1880 in Northern-Iceland. The school was intended for future farmers and 
craftsmen, while in 1908 its final examination sufficed for entrance into the 
Reykjavík School. Its syllabus thus became more theoretic with time. It remained the 
only school of its kind until 1928. Several privately run lower secondary schools as 
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well as technical schools were established from the 1880s with some support from the 
state, increasing in number after the turn of the century. 

Along with the establishment of schools, textbooks in the vernacular were written and 
published. Among them was the topic of this paper, the first Icelandic textbook in 
geometry, published in 1889, Flatamálsfræ!i / Plane Geometry by the Reverend 
Halldór Briem, teacher at the new lower secondary school in Northern-Iceland.  

GEOMETRY TEACHING IN EUROPEAN HISTORY 

The study of geometry was collected into a coherent logical system by Euclid in his 
Elements in 300 BC. The main goal of studying classical Euclidian geometry with its 
logical deductive axiom system has been considered to train logical reasoning. The 
Euclidian system provided a model for creating various axiom systems in the last half 
of the 19th century. Axioms were developed for the set of positive integers by G. 
Frege and G. Peano in the 1870s, and e.g. Dedekind contributed to a precise 
definition of the idea of a real number in the same period.  

There were, however, several flaws in Euclid’s system, e.g. an assumption 
concerning continuity, not explicitly mentioned. D. Hilbert published his Grundlagen 

der Geometrie in 1899, where he defined five sets of axioms, a complete set, from 
which Euclidian geometry could be derived. Hilbert’s set of axioms contains two 
which concern the basic idea of continuity, where the tacit assumption of Euclid is 
made explicit (Katz, 1993: 718–721). 

THEORIES ON GEOMETRY LEARNING 

According to the theory of Pierre and Dina van Hiele, developed in the late 1950s, 
pupils progress through levels of thought in geometry. Their model provides a 
framework for understanding geometric thinking (Clements, 2003: 152–154). The 
theory is based on several assumptions; that learning is a discontinuous process 
characterized by qualitatively different levels of thinking, that the levels are 
sequential, invariant, and hierarchical, not dependent of age, that concepts, implicitly 
understood at one level, become explicitly understood at the next level, and that each 
level has its own language and way of thinking.  

In the van Hiele model, Level 1 is the visual level in which pupils can recognize 
shapes as wholes and cannot form mental images of them. At level 2, the descriptive, 
analytic level, pupils recognize and characterize shapes by their properties. At level 3, 
the abstract/relational level, students can form abstract definitions, distinguish 
between necessary and sufficient sets of conditions for a concept, and understand, 
and sometimes even provide logical arguments in the geometric domain, whereas at 
level 4, students can establish theorems within an axiomatic system.  

According to Clements (2003), research generally supports that the van Hiele levels 
are useful in describing pupil’s geometric concept development, even if the levels are 
too broad for some tastes. The van Hiele levels may e.g. not be discrete. Pupils 
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appear to show signs of thinking at more than one level in the same or different tasks 
in different contexts. They possess and develop competences and knowledge at 
several levels simultaneously, although one level of thinking may predominate. 

GEOMETRY IN EUROPEAN SCHOOLS 

The Euclidian axiomatic deductive presentation of geometry was a norm for the 
subject in early modern age secondary schools. When people began to talk about 
geometry teaching, based on observation and experiments, by the end of the 18th 
century in Denmark the idea was hard to fight for (Hansen, 2002: 106).  

As a germ to a new era, the proponent of the Enlightenment movement, Rousseau, 
wrote in his Emile in 1762: “I have said that geometry is not within the reach of 
children. But it is our fault. We are not aware that their method is not ours, and that 
what becomes for us the art of reasoning, for them ought to be only the art of seeing” 
(Rousseau, 1979:145). There is a consonance in this quote to the van Hiele theory; 
the children are still at level 1, the visual level. 

During the 19th century and the early 20th century the prevailing view of geometry 
instruction and general education in England was challenged (Prytz, 2007: p. 41–42). 
Mathematicians like Bertrand Russell resumed the critique regarding tacit 
assumptions and lack of rigor in Euclid’s Elements. Educators argued that geometry 
could be made more palatable to pupils, and others demanded that mathematics 
instruction should be adapted to practical matters. The last group of critics was led by 
a mathematics teacher, John Perry, at a technical college where the final 
examinations had to adhere to the standards of pure mathematics. His efforts were 
successful and led to changes of regulations in the early 20th century. During the 20th 
century both practical geometry and the experimental approach were indeed picked 
up at secondary schools and colleges in England. 

As early as 1802 the German philosopher and pedagogue Herbart (1776–1841) 
argued that imaginary skills are important in connection to geometry instruction. The 
textbook writers Treutlein (1845-1912) in Germany and Godfrey (1876-1924) in 
England were influenced by him. Both of them underscored the importance of 
developing intuitive thinking in connection to mathematics instruction (Prytz, 2007: 
p. 43–44). At the beginning of the 20th century the German educational system went 
through important changes, where e.g. the increasing importance of technology 
undermined the position of pure mathematics. One of the leading actors was the 
German mathematician Felix Klein (1849–1925) (Prytz, 2007: p. 40).  

Thus experimental and intuitive approaches to geometry instruction in secondary 
schools were discussed in Germany and England by the turn of the 20th century, 
where influential opinion makers were Perry and Klein. In both these countries, 
official reports occurred that stressed the importance of such teaching methods and 
they were included in the first geometry courses at the secondary schools (Prytz, 
2007: p. 43).   
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THE POLITICS OF MATHEMATICS EDUCATION IN ICELAND 

In the first half of the 19th century, in 1822–1862, the secondary Reykjavík School, 
the only school of its kind in Iceland, was served by mathematician B. Gunnlaugsson. 
Gunnlaugsson had won a gold medal at the University of Copenhagen and made the 
great feat on his own to measure Iceland geodetically in twelve summers to create the 
outlines of the country’s modern map. During Gunnlaugsson’s period, classical 
geometry teaching was developed at the school according to new requirements of the 
University of Copenhagen of 1818. Gunnlaugsson had to use Danish textbooks but in 
order to enhance the pupils’ motivation he gave them geodesy problems 
(Bjarnadóttir, 2006: 90–93; National archives, Bps. C. VII, 3a).     

Secondary schools in Denmark were split into a language-history stream and a 
mathematics-science stream in 1871. The Reykjavík School adhered to the same law, 
but with own regulations. It was too small to be divided into two streams so after 
some lobbyism and compromises the school became a language stream in 1877 and 
mathematics was only taught for four years out of its six-year programme 
(Bjarnadóttir, 2006: 112–118). This decision caused some dispute and a conflict for 
several years. University student F. Jónsson, later professor in philology at the 
University of Copenhagen, wrote in 1883, criticizing the school and its regulations: 

... to teach mathematics without practical exercises ... is ... as useless as it can possibly 
be, ... the worst has been the lack of written exercises; … all deeper understanding has 
been missing, all practical use has been excluded ... the new regulations have 1) snapped 
trigonometry away, 2) prescribed that mathematics is only to be taught during the 4 first 
years (previously all) and thereby dropped for the graduation examination, and 3) 
geometry shall commence already in the lowest class;  

these three items are as I conceive them equally many blunders; …to skip the 
trigonometry is to skip what is the most useful and interesting in the whole bulk of 
mathematics ... that the [geometry] study is to commence in the first grade; in order to 
grasp it, more understanding, more independent thought is needed than those in the first 
grade master; [I] tutored two boys in geometry and both of them were not dumb and not 
merely children, and for both of them it was very difficult to understand even the 
simplest items; but the reason was that they did neither have the education nor the 
maturity of thought needed to study such things, which is very natural (Jónsson, 1883: 
115–116).1 

The pupils of the Reykjavík School were sons of farmers, priests and other officials. 
The priests also made their living from farming as did county magistrates so the 
majority of the pupils came from farming communities. There were no primary 
schools in rural areas. The novices came to school prepared by priests in Latin, 
Danish and basic arithmetic. Presumably most of them had never met geometrical 
concepts. For example, land properties were not measured in square units, but were 
from medieval times valued according to how much livestock they could carry.  
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Considering the van Hiele theory, one may understand that the pupils did not possess 
‘the maturity of thought’ needed to study deductive geometry as presented in the 
Danish author Jul. Petersen’s system of textbooks, written in the period 1863–1878 
and used at the Reykjavík School at the time Jónsson is referring to. The pupils were 
expected to jump to level 3 of geometric thinking without any preparatory training at 
lower levels. In Petersen’s necrology it said: 

First around the turn of the century people began to realize that the advantages of these 
textbooks were more obvious for the teachers than for the pupils ... the great conciseness 
and the left-out steps in thinking did not quite suit children (Hansen, 2002: p. 51).2  

Petersen’s textbook on introduction to geometry, remained as an introductory course 
at the school for close to hundred years, to be discarded in the late 1960s 
(Bjarnadóttir, 2006: 320), and was to disturb the life of many a young pupil.       

GEOMETRY BY HALLDÓR BRIEM 

The Reverend Halldór Briem (1852–1919), published his Flatamálsfræ!i / Plane 

Geometry in 1889. Briem was admitted to Reykjavík School in 1865 to graduate in 
1871. He enjoyed there the controversial mathematics teaching described by Jónsson 
above. Briem was educated as priest in Iceland, but stayed during 1876–1881 in the 
Icelandic community in Manitoba and Winnipeg in Canada where he was editor of an 
Icelandic journal. He may have become acquainted there with school mathematics, 
but record of that is not available. H. Briem wrote textbooks on geometry, English, 
Nordic mythology, Icelandic grammar and Icelandic history, in addition to theatre 
plays and various translations into Icelandic, among them of the story of Robin Hood. 

In the foreword to the Plane Geometry, Briem declared his policy: 

... no textbook in geometry in Icelandic has been available. I have therefore had to make 
use of foreign textbooks ... Other schools for the public in this country have not been in 
better situation in this respect and this shortage is the more severe, as knowledge of 
mensuration is completely indispensible in various daily tasks of farmers, carpenters and 
others, besides that it is an important item in general education ... 

In composing it, my goal has mainly concerned what is the most important in general 
industrial activity and therefore I have emphasized the main items concerning that as 
much as possible, and omitted other items that are less important to the production. The 
arrangement of the content is therefore different from what is customary in this kind of 
textbooks, where every sentence is supported by scientific proofs, but according to my 
policy that did not apply here. 

... [Reykjavík School] teacher Björn Jónsson has read the manuscript of the book, and 
offered me many good hints ... (Briem, 1889: iii-iv).3    

H. Briem’s brother, the Reverend E. Briem was also a textbook writer. His Arithmetic 
(1869) was a dominating textbook for adolescents, also at the Reykjavík School, in 
1869–1910s. It is very unlikely that the brothers were involved in didactic discussions 
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known in Europe about mathematics as a discipline exclusively to train the mind. The 
brothers declared as their first aim to meet the immediate needs of young people for 
practical knowledge. One might even conjecture that the authors thought that 
bothering about proving self-evident facts was an intellectual luxury (or adversity) 
that educationally-deprived youth were not to be disturbed with.  

The introduction of H. Briem’s Plane Geometry is devoted to basic assumptions, 
such as of a space, a body, a plane or surface, a line and a point, in this order. The 
body is not composed of planes, the author states, and the plane not of lines as the 
planes have no thickness. The line has no width and it is not composed of points. 
However if one thinks of a point moving from one spot to another its track is a line. If 
a line moves in a direction perpendicular to itself, its track will be a plane and if a 
plane moves in a direction perpendicular to itself, its track will be a solid. 

H. Briem seems to have thought of points as discrete objects and a line as a 
continuous track, which he could not think of as made up of points. Briem had little 
opportunity to become acquainted with modern ideas of real analysis or the works of 
Dedekind or Cantor in the 1870s, and the work of Hilbert on new sets of axioms for 
Euclidian geometry, where the ambiguity about continuity was amended, had not yet 
appeared. But a priest teaching mathematics to adolescents on the outskirts of Europe 
felt a need to philosophize on his own about the nature of lines and planes and their 
relations to points. 

Briem continued with definitions; of parallel lines, an angle, of plane figures, such as 
triangles, various quadrilaterals, polygons the circle and the ellipse, various 
quadrilaterals and finally of similarity and congruence. The names of the shapes are 
in Icelandic with Latin in parentheses. As this was the first book on geometry ever 
written in Icelandic, remembering it all must have been a difficult task. A score of 
exercises follow the definitions. Attached to the exercises are answers to them and 
explanations. This was necessary as lower secondary schools were scarce and the 
textbook was to serve for home studies as well. 

In connection to the definition of a triangle, its attributes are also investigated. It says: 

All the angles in a triangle are 180° in total. In the triangle ABC (diagram 19) CB is 
perpendicular to AB, therefore the angle B = 1R [R a right angle], furthermore CB is 
equal to AB; by drawing the triangle ADC equally large and similar to the triangle ABC 
[congruence had not yet been defined], one may see that x and y each are the half of a 
right angle, therefore the sum of the angles in the triangle is 2R. The same concerns all 
triangles, as the larger or smaller one of the angles is, the others (one of them or both) 
become smaller or larger. In a triangle therefore only one angle can be right or obtuse 
(Briem, 1889: 14).4 

In this text a diagram is referred to, but because of a high printing 
cost all diagrams are printed together as an attachment at the back 
of the book. Clearly the author appeals to the intuition of the reader 
to see that the angles x and CAD are complementary, as well as y 
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and ACD. Furthermore, the triangle ABC is a special case of an isosceles right 
triangle, and the reader is invited to take its attributes as universal. The author had 
presented parallel lines and their angles to a transversal line and so was able to 
present the regular proof of the sum of angles in a triangle but obviously he preferred 
to do it this way. 

The common reader, the future farmer or carpenter, may not have been expected to 
need more ‘scientific’ proofs, the fact that the sum of the angles in the triangle ABC 
is two right angles, is more or less obvious from the diagram, but more credulousness 
is needed for believing that it applies to all triangles. Schools, through the centuries, 
have expected their pupils to believe what is stated in textbooks. This is not much 
different from any other point of view than that mathematics studies are expected to 
foster critical thinking among their students. 

In continuation, a square root is introduced as are common measuring units, which 
were quite complicated before the introduction of the 
metric system in 1907. The following chapter concerns 
areas of parallelograms, squares, rhombi and triangles with 
plausible explanation aided by the diagrams at the back of 
the book. The areas of a trapezoid and polygons are 
deduced from the area of a triangle. Heron’s rule is 
introduced without a proof or explanation, as is the 
Pythagorean Theorem whose proof is stated to be too 
difficult for the readers. A diagram of the 3 – 4 – 5 triangle 
(diagram 51) is presented as an illustration of the rule.  

In a circle the perimeter is stated to be 
113

163 times the radius, while later this and other 

values for ! are said to be approximations to the true value which may be reached as 
close to as desired. The circle is thought to be composed of many small triangles, 
whose top-angles meet at the centre of the circle, from which the area of a circle was 
deduced. This continues with areas of sectors and annuli and finally of an ellipse. 

A chapter is devoted to proportions, which probably was difficult as the pupils may 
not have had much experience in solving equations. When coming to proportions in 
the right triangle, the author reveals the algebraic proof 
of the Pythagorean Theorem. 

In the final chapter, the author introduced 
constructions; to bisect a segment, to divide a segment 
into any number of segments, to construct a right 
angle, to double the area of a square and a circle and to 
transform a rectangle to a square with the same area. 
This is illustrated in diagram 45 where the dimensions 
of the rectangle are AD and DB and the side of the 
square is CD. This is a consequence of proportions in 
the right triangle already introduced, and the author 
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refers to it through diagrams. Earlier, the necessary prerequisite, that a periphery 
angle is half the centre angle of the same arc, had been illustrated for a right 
periphery angle, sufficient for this construction.  

All things considered, the text, after the initial introduction of concepts, is readable, 
although concise, with sensible explanations of most of the formulas with the aid of 
diagrams, which regrettably could not be attached to the text in concern. The 
exercises were mainly computations of sizes of angles, lengths of sides in right 
triangles and various area computations, but no constructions. One may suggest that 
the level of the book was closer to van Hiele level 2 than e.g. Petersen’s textbook, but 
was certainly not level 1. 

However, even if one can claim that Briem’s geometry was based on observations of 
his diagrams, it can hardly be maintained that they concerned the pupils’ real world. 
The problems seldom had content, and if so they were synthetic in the sense that they 
asked to find areas that few would want to know. It was not customary to compute 
the area of land except to estimate the time needed to mow it, and few had reasons to 
find the area of an ellipse-shaped dining table. The author was indeed faithful to the 
Euclidian content but was unafraid to simplify proofs and appeal to intuition. 

The author of Plane Geometry taught mathematics, Danish, singing and physical 
education in the state-run lower secondary school in Northern-Iceland. The Plane 

Geometry was used in that school and possibly in some other schools, but not at the 
Reykjavík School which adhered to regulations for Danish Latin schools. However, 
Briem’s second geometry textbook on volumes (Briem, 1892), which was not as 
sensitive to rigor, was used there for some number of years. 

In 1904 a learned mathematician, Dr. Ó. Daníelsson graduated from Copenhagen 
University and came up to Iceland to teach. He completed his doctoral degree in 1909 
with geometry as his special field. Until his time there was no mathematician to 
dispute geometry instruction with. Dr. Daníelsson tried to use Briem’s Plane 

Geometry in teacher training for one year, but gave up, presumable due to lack of 
rigor. He turned to foreign textbooks until he published his own, where he for 
example used the definitions of parallel lines and their angles to a transversal line to 
prove that the sum of the angles in a triangle is 180°. He also proved the theorem of 
Pythagoras with the aid of geometric figures (Daníelsson, 1914).   

DISCUSSION 

Many pedagogues emphasize that learning is dependent on a cultural environment 
(see e.g. D’Ambrosio, 2001). It is notable that through the history of education in 
Iceland, trigonometry and geodesy stand out as being considered interesting and 
useful subjects, while no trace is found of rigid Euclidian geometry for any other 
purpose than fulfilling the requirements of the University of Copenhagen.  

H. Briem belonged to a generation of intellectuals who were much aware of the low 
status of education in Iceland and who participated in the struggle for independence 
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in order to be able to form own educational policy. Briem was one of two teachers 
who were appointed to a new lower secondary school, to whom people had great 
expectations that it would raise the level of education of the general public. The 
school was not restricted by any regulations on the mathematics content so Briem had 
freedom to form the mathematics instruction as he thought suitable. His efforts to 
avoid ‘scientific proofs’ reminds of the efforts of Perry in England to release the 
technical schools from the standards of pure mathematics.  

Briem’s textbook may be considered as a reaction to geometry instruction as it was 
performed in the Reykjavík School in the 1870s, without consideration to the young 
pupils’ level of thinking and without any reference to their environment or to the 
Icelandic culture. It is though questionable to which degree Briem succeeded in 
connecting the content to the environment and Icelandic reality.  

One can hardly claim either that Briem succeeded entirely in meeting the pupils’ 
level of geometric thinking, but he did avoid bothering them with proving what they 
might have thought ‘obvious facts’. His collection of exercises did not contain any 
pure deduction, but consisted of fairly approachable numerical exercises. 

These were times of rapid changes away from a stagnant agricultural society. 
Craftsmen were a rising class in the 1890s and the textbook was intended to introduce 
them to basic facts of geometry, useful in their trade. It must have been useful, even if 
it also contained some irrelevant topics, when taken into account that no other text on 
the subject was available in their own language. Briem made a great effort to 
transform concepts from foreign languages into Icelandic, which had no tradition of 
geometry.  

Briem’s textbook was indeed an ambitious textbook for its time and no textbook, 
written in Icelandic, intended for the non-college-bound general public and reaching 
that level of complexity, has been published since in Iceland. 
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1 ... a# kenna stær#fræ#i án verklegra æfinga ... er ... svo gagnslaust sem frekast má 
ver#a, ... $a# sem vestu hefur gegnt er skortur á skriflegum æfingum ... alla d%pri eigna 
skilning hefur vanta# ... n%ja regluger#in hefur 1) kippt burtu $ríhyrningafræ#i 2) lagt 
$a# fyrir a# stær#afræ#i sje a#eins kennd 4 fyrstu árin (á#ur öll) og $ar me# slept til 
burtfararprófs og 3) lagt $a# til a# rúmmálsfræ#i skuli kennd strax í ne#sta bekk;  

$etta $rennt er nú a# minni hyggju jafnmörg axarsköft; ... a# sleppa $ríhyrningafræ#inni 
er a# sleppa sem $ví einna nytsamlegast er og skemmtilegast í allri stær#afræ#inni ... a# 
námi# skyldi byrja í 1. bekk; til $ess a# nema hana $arf meiri skilning, meiri sjálfstæ#a 
hugsun, heldur en $eir hafa almennt, sem eru í ne#sta bekk; [eg veitti] tilsögn tveimur 
piltum í rúmmálsfræ#i og vóru $eir bá#ir óheimskir og ekki hrein börn a# aldri, og áttu 
$eir mjög erfitt me# a# skilja hi# allra einfaldasta; en $a# kom til af $ví a# $eir höf#u eigi 
$á menntun nje hugsana$roska, sem $arf til a# læra slíkt, og er $a# fulle#lilegt. 
2 Først henimod aarhundredeskiftet begyndte man at faa Øjet op for at det fortrinlige ved 
disse Lærebøger var mere indlysende for Lærerne end for Eleverne ... den store 
Kortfattethed og de udeladte mellemled i Tankegangen ikke egnede sig rigtigt for børn. 
3 ... ekki hefur veri# til á íslensku nein kennslubók í rúmmálsfræ#i. Jeg hef $ví or#i# a# 
notast vi# útlendar kennslubækur ... A#rir al$%#uskólar hjer á landi eru ekki betur staddir 
í $essu tilliti, og er $essi skortur $ví tilfinnanlegri, sem $ekking á mælingum er alveg 
ómissandi í %msum daglegum störfum fyrir bændur, smi#i og fleiri, auk $ess sem hún er 
mjög mikilsvert atri#i almennrar menntunar. ... 

Vi# samningu hennar hef ég einkum haft fyrir augum, hva# $%#ingarmest væri í almennu starfslífi, 
og dregi# $ví mest fram $au a#alatri#i, sem $ar a# lúta, en sleppt hinu, sem hefur minni $y#ingu í 
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starfslífi manna. Ni#urskipun efnisins er $ví nokku# á a#ra lei#, en vant er a# hafa í $ess konar 
kennslubókum, $ar sem hver setning er rakin me# vísindalegum sönnunum, en samkvæmt stefnu 
minni átti $a# ekki vi# hjer. 

... kennari Björn Jensson hefur lesi# yfir handriti# af bókinni, og gefi# mjer %msar gó#ar bendingar 

... 
4 Öll hornin í $ríhyrningi eru samtals 180°. Í $ríhyrningnum ABC (19. mynd) er CB 
ló#rjett á AB, $ess vegna er horni# B = 1R, ennfremur er CB jafnstór AB; me# $ví a# 
draga $ríhyrninginn ADC jafnstórarn og eins laga#an og $ríhyrninginn ABC, má sjá, a# x 
og y eru hvort um sig helmingur af rjettu horni, fyrir $ví eru öll hornin í $ríhyrningnum 
ABC samtals 2R. Sama á sjer sta# í öllum $ríhyrningum, $ví eftir $ví sem eitt horn er 
stærra e#a minna, ver#a hin, (anna# e#a bæ#i) minni e#a stærri. Í $ríhyrningi geta $ví 
einungis eitt horn veri# rjett e#a sljóvt. 
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INTRODUCING THE NORMAL DISTRIBUTION BY 
FOLLOWING A TEACHING APPROACH INSPIRED BY 
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Probability and random variables turn out to be an obstacle in the teaching-learning 

process, partly due to the conceptual difficulties inherent in the topic. To help 

students to get over this drawback, a unit on “Probability and Random Variables” 

was designed following the guidelines of the European Higher Education Area and 

subsequently put into practice at an engineering school. This paper focuses on the 

design, implementation and assessment of a specific activity of this unit concerning 

the introduction of the normal probability curve from a teaching-learning approach 

inspired by history. To this purpose a historical module on the normal curve 

elaborated by Katz and Michalowicz (2005) was adapted to develop different aspects 

of the topic. 

 

Keywords: probability, normal distribution, European Higher Education Area, 
teaching-learning materials on history of mathematics. 

 

INTRODUCTION 

Teaching probability and random variables turn out to be essential for the introducing 
of statistical inference in any undergraduate course in basic statistics. Statistics is one 
of the compulsory undergraduate subjects included in the syllabus of any engineering 
school. This subject, as developed at the School of Agricultural Engineering of 
Barcelona (ESAB) of the Technical University of Catalonia (Spain), primarily 
encompasses Data Analysis and Basic Statistical Inference. We believe that the very 
nature of the subject calls for special consideration in the teaching of the subject, 
especially with regard to the new European Higher Education Area (EHEA). Besides, 
the essentially biological profile of the ESAB seems to weaken interest in the 
mathematical domains.  

From our experience in teaching statistics at different engineering schools, we are 
well aware that probability and random variables represent a rather overwhelming 
obstacle for students, due to the conceptual difficulties inherent in the topic. To help 
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students get over this drawback, a unit on “Probability and Random Variables” was 
designed following the guidelines of the EHEA. Subsequently, this unit was put into 
practice at the ESAB. Throughout the module, the teaching-learning process was 
assessed using several evaluation techniques so as to analyse the learning outcome 
achieved (Blanco & Ginovart, 2008). This paper focuses on the design, 
implementation and assessment of a specific activity of this unit concerning the 
introduction of the normal probability curve and some related aspects from a 
historical dimension. 

Mathematical and statistical topics have been traditionally taught in a deductively 
oriented manner, presented as a cumulative set of “polished” products. Through a 
collection of axioms, theorems and proofs, the student is asked to become acquainted 
with and competent in handling the symbols and the logical syntax of theories, 
logical clarity being sufficient for the understanding of the subject. As a result, the 
traditional teaching of mathematics tends to overlook the mistakes made, the doubts 
and misconceptions raised when doing mathematics, detaching problems from their 
context of origin. However, since the construction of meaning is only fulfilled by 
linking old and new knowledge, the learning of mathematics, in general, and 
statistics, in particular, lies in the understanding of the motivations for problems and 
questions. In this respect, integrating the history of mathematics in education 
represents a means to reflect on the immediate needs of society from which the 
mathematical problems emerged, providing insights into the process of constructing 
mathematics (Tzanakis & Arcavi, 2000; Swetz et al., 1995). 

How to introduce a historical dimension in our unit on probability and random 
variables turned out to be a challenge to our “standard” teaching activity, all the more 
so because first we had to determine which role history would play in the unit. Of the 
three different ways suggested by Tzanakis & Arcavi (2000) to integrate history in 
the learning of mathematics, the one that seemed to serve our purpose best was to 
follow a teaching-learning approach inspired by history. In the context of this paper 
history was integrated implicitly, since the main aim was to understand mathematics 
(statistics, in particular) in its modern form, bearing in mind, throughout the teaching 
process, those “concepts, methods and notations that appear later than the topic under 
consideration” (Tzanakis & Arcavi, 2000, p. 210). Accordingly, after having selected 
a historical module on the normal curve elaborated by Katz and Michalowicz (2005, 
pp. 40-57), we adapted it to develop different aspects of the topic. The aims of the 
activity were to: 

Aim 1.- Show motivation for the topic. 

Aim 2.- Show interrelation between mathematical domains, on the one hand, and 
mathematical and non-mathematical domains, on the other. 

Aim 3.- Compare modern “polished” results with earlier results. 

Aim 4.- Produce a source of problems not artificially designed for the purpose. 

Aim 5.- Develop “personal” skills in a broader educational sense. 
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These aims are explicitly connected with the ones described by Tzanakis & Arcavi 
(2000, §§7.2. (a) and 7.2. (c1), pp. 204-206). 

 

THE NORMAL DISTRIBUTION: AN INTRODUCTION INSPIRED BY 
HISTORY 

Right at the beginning of the course our students are informed about the specified 
learning outcomes, classified according to Bloom’s taxonomy (Bloom, 1956) into: 
Knowledge, Comprehension and Application. The learning outcomes regarding the 
normal distribution have been articulated as follows: 

Table 1. Learning outcomes regarding the normal distribution.  

After attending the course the student will be able to:  

a) Define and recognize the normal (or Gaussian) distribution, as 
well as the standard normal distribution. 

[Knowledge] 

b) Convert an arbitrary normal distribution to a standard normal 
distribution. 

[Comprehension] 

c) Calculate probabilities of events when a normal distribution is 
involved, using the table of the standard normal distribution. 

[Comprehension] 

d) Describe the empirical rule 68-95-99.7. [Comprehension] 

e) Apply the rule 68-95-99.7 to assess whether a data set is normally 
(or approximately normally) distributed.  

[Application] 

f) Estimate the approximation of the normal distribution to the 
binomial distribution. 

[Application] 

To adapt the historical module it was first necessary to frame the activity within well-
defined boundaries (Katz & Michalowicz, 2005). Therefore, we started selecting and 
later reflecting on some questions suggested by Pengelley (2002) for assessing 
historical material: (a) What is the purpose of studying the material? (b) How does it 
fit in with the curriculum? (c) Are there appropriate exercises, with an appropriate 
difficulty level and well chosen to demonstrate concepts? (d) Will it motivate 
students? (e) Will it help with something students have trouble with? Since the 
activity described in this paper was directed towards the learning outcomes 
mentioned above (see Table 1), question (b) was explicitly involved. 

To show the original motivation for the topic of the normal distribution, the activity 
emphasized interrelation between statistics and health and social sciences, hence 
covering Aims 1, 2 and 4. Although the topic had already been introduced in the 
classroom, the teaching-learning process was able to benefit from the study of non- 
artificially designed problems. From Katz’s module we elaborated the material for 
the activity combining information about the historical development of the normal 
curve with some “appropriate” questions. There were no accompanying answer 
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sheets as the activity was designed to be worked out in a two-hour computer lab 
session, individually or in pairs. Most of the students worked individually, whereas 
only few computers were shared by two students working together. The teacher acted 
as a consultant during the session. Students managed the time given over to every 
section of the activity themselves, according to their individual needs and skills. If 
they could not accomplish their work in the computer lab, they had the possibility to 
do it as homework. It is worth pointing out that the questions were chosen not only to 
assess understanding of the information provided, but also to bring out the connection 
with other mathematical domains. Hence, students were asked to prove expressions 
and formulae, to use a spreadsheet to carry out elementary probability calculations 
and to represent data, and to investigate supplementary aspects regarding the contents 
of the activity. All these aspects were planned in order to cover Aims 3 and 5.  

In connection with question (a) stated above, this activity attempts to introduce the 
normal probability distribution in its original context, and to help students to get 
acquainted with basic calculations involving the normal curve. The first section of the 
activity shows how De Moivre (1667-1754) obtained his discovery of the empirical 
rule 68-95-99.7. The second section gathers the discussion on the error curve in 
which Laplace (1749-1827) and Gauss (1777-1855) were involved. How Quetelet 
(1796-1874) calculated the table of the normal distribution from the approximation of 
the normal distribution by the binomial distribution is the target of the third section. 
To close the activity, the fourth section is centered on the first uses of the normal 
distribution in the real world, namely: i) analysis of the chest circumference of 5732 
Scottish soldiers; ii) analysis of the heights of French conscripts to assess the 
normality of the distribution, revealing a significant figure of men who illegally 
avoided recruitment. 

We interspersed the text with seven leading questions related to the topics discussed, 
given at strategically points during the activity, and not on a separate sheet at the end. 
Questions 1, 4, 6 and 7 were directly inspired by the ones suggested by Katz and 
Michalowicz (2005) on pages 46, 55, 56 and 57, respectively. The rest were stated by 
us, to ensure that a particular point was fully understood. The questions were 
conveniently placed after a specific topic or a related result. The following 
paragraphs briefly describe each question, drawing attention to the educational aims 
served by each one. 

Question 1: In an experiment in which 100 fair coins are flipped, about how many 
heads would you expect to see? What is the corresponding standard deviation? Find 
the limits (lower and upper) for the number of heads we would get 68%, 95% and 
99.7% of the times. 

This first question deals with direct manipulation of a binomial distribution, followed 
by a first encounter with the connection between the normal and the binomial 
distributions. This was intended to help students to “warm up” by stating a link 
between the activity and a topic they had already learned in the classroom, thus 
relating to Aim 1. 
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Questions 2 through 4 are connected with Quetelet’s calculation of a symmetric 
binomial distribution. He considered the experiment of drawing 999 balls from an urn 
containing a large number of balls, half of which were white, and half black.  

Question 2: Prove Quetelet’s shortened procedure for the calculation of relative 

probabilities: )(
1

999
)1( nXP

n

n
nXP =!

+

"
=+= , where )( nXP = represents the 

probability of drawing n black balls from the urn. Setting the value of )500( =XP  to 
be 1, calculate the relative probabilities )501( =XP  and )502( =XP . 

Students had to deduce this recursive formula from the probability function of the 
binomial distribution. This question was inserted to show the interrelation between 
mathematical domains, namely, probability and recursive proofs (Aim 2). In this case 
the interest lies in how to evaluate mathematical arguments and proofs, and to select 
and use diverse types of reasoning and methods of proof as appropriate (Ellington, 
1998). Given that students often meet difficulties in proving recursive formulae, this 
exercise seems to be consistent with questions (c) and (e) suggested above. 

Question 3: Using an Excel worksheet recalculate column A of Quetelet’s table for 
the values 500 to 579 and graph the corresponding curve. 

To get a deeper knowledge of the binomial-normal link, students were here asked to 
use a spreadsheet, in particular, the spreadsheet program Microsoft Excel. Since the 
activity was developed in the context of computer practicals, students had computers 
at their disposal. The computer practicals offer students the possibility to be actively 
engaged in the learning process, as well as to apply the concepts learnt to the 
prospective working practice. Since this topic turns out to be a usual source of 
difficulty, this exercise connects again with question (e). Besides, it helps not only to 
compare modern results with earlier ones, but also to develop “personal” skills such 
as how to manipulate a spreadsheet. Therefore, this exercise focuses on Aims 3 and 5.  

Question 4: A discrete variable can be approximated by a continuous variable 
considering the following estimation:  

continuousdiscrete kxkPkxP )5.05.0()( +!!"#= . 

For instance, 
normalbinomial xPxP )5.5005.499()500( !!"= .  

Using this information, recalculate the first four values in column A using a modern 
table of the normal distribution.  

It can be assumed that the results of drawing balls out of the urn are normally 
distributed with mean of the number of black balls equal to 500 and standard 

deviation equal to 8.15999
2

1
! . Compare these results with Quetelet’s binomial 

table. 
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Understanding why we do things the way we do, and how mathematical concepts, 
terms and symbols arose, plays a relevant role in grasping the topic (Ellington, 1998). 
This question allowed the students to compare a modern table of the normal curve 
with the earliest table. Thus Aim 3 is again involved in the proposed activity. 

Finally, Questions 5, 6 and 7 concern some real world applications of the normal 
distribution. 

Question 5: Read carefully Quetelet’s procedure for determining whether the chest 
circumferences of the Scottish soldiers were normally distributed. Write down those 
points you do not understand completely.  

Question 6: From the results in the example of the heights of French conscripts, 
discuss how Quetelet concluded there had been a fraud.  

From the reading and through understanding of the example on the chest 
circumferences (Question 5) students were to draw conclusions in the case of the 
heights of French conscripts (Question 6). However, as we will see in the following 
section, since Quetelet’s procedure proved to be difficult to understand, only a few 
students managed to answer Question 6 correctly. 

Questions 4, 5 and 6 contribute to Aim 3 in that they help to compare historical 
results with modern “polished” ones. Likewise, Aim 4 could be achieved, since these 
questions convey the idea that probabilistic tools represent a means to solve real-
world problems, rather than just artificial designed exercises, framed in a theoretical 
context. By and large, this set of questions also fosters the practice of reading 
comprehension skills (Aim 5).  

Question 7: On the Internet, browse for the information on Galton’s machine. What 
was the relationship between the inventor Francis Galton (1822-1911) and Charles 
Darwin (1809-1882)? 

The intend of this last question was to help develop some “personal” skills, in a 
broader educational sense, such as reading, summarizing, writing and documenting 
(Aim 5). Additionally, it was interesting to point out the interrelation between 
mathematical and non-mathematical domains, namely, between statistics and the 
theory of evolution put forward by Darwin (Aim 2). A fundamental part of this 
question involves the writing component and documenting. The incorporation of a 
writing component in statistics courses has been encouraged in recent years by 
Radke-Sharpe (1991) and Garfield (1994). Writing helps students to think about the 
assumptions behind statistical, graphical or instrumental procedures, to formulate 
these assumptions verbally, and to critically examine the suitability of a particular 
procedure based on its assumptions. The inclusion of documenting (i.e. browsing the 
Internet) facilitates student reading, understanding and summarizing from different 
sources. In short, reading, writing and documenting are tools that will serve students 
well in their future scientific or academic writing. Encouraging students to put 
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concepts such as these into words will strengthen their understanding of those 
concepts. 

 

ASSESSMENT OF THE TEACHING-LEARNING PROCESS 

Among the questions mentioned above for assessing historical material, Pengelley 
(2002) suggests considering whether it will motivate students (question (d)). Though 
not the only source of feedback, student ratings provide an excellent guide for 
designing the teaching-learning process and, in particular, for assessing their 
motivation. Therefore, at the end of the activity students were asked to rate the 
activity thus: 

(1) Very good, (2) Good, (3) Satisfactory, (4) Poor, and (5) Very poor. 

Figure 1 shows the results of this survey. Of the 60 students who took part in the 
activity, half of them regarded it positively (22 satisfactory, 6 good, 1 very good), 
whereas the other half rated it as poor. 

 

 

 

 

 

 

 

Figure 1. Student ratings on the activity. 

Another aspect suggested by Pengelley (2002) for assessing historical material 
concerned the suitability of the degree of difficulty (question (c)). To determine 
whether the activity was appropriately difficult, we analysed in detail a random 
sample of size 20 drawn from the students who had handed in their answers. Every 
question (except Question 5) was marked with either Non-Answered, Poor, Fair or 
Good. From the graphics of Figure 2 regarding the assessment of the questions, it is 
clear that Questions 1 through 4 are most frequently marked as “Good”. Surprisingly, 
all the students answered Questions 1 and 2, whereas the ratio of “Non-Answered” in 
Question 6 exceeded the rest of marked ratios. As for Question 7, most of the 
students got “Fair”. This was partly due to the fact that students merely copied the 
information from the Internet and pasted it on their worksheets, thus showing no 
interest in summarizing the information in their own words. 

Relating to Question 5, from the comments given by our students we gathered that 
the construction of the table proved to be, in general terms, rather cumbersome.  
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Figure 2. Assessment of the Questions of the activity with Non-Answered (NA), Poor (P), 
Fair (F) or Good (G). 

 

FINAL REMARKS 

As Fauvel and Maanen (2000) point out, one should not underestimate the difficult 
task of the teacher in achieving a proper transmission of historical knowledge into a 
productive classroom activity for the learner. Given our lack of expertise in the field, 
in this first experience we were not able to foresee all the possible obstacles in the 
understanding process. Now we are aware of some difficulties inherent in the 
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material (regarding, for instance, Questions 5 and 6). First of all, the mathematical 
language and form (notation, computational methods, etc) turned out to be rather 
confusing right from the beginning. In addition, the syllabus and a sense of lack of 
time made us cram the activity into a two-hour class. Likewise, we had a slight doubt 
about how useful the topic was for our students. Why not give the opportunity to 
appreciate the topic in itself, stressing the aesthetics, the intellectual curiosity, or the 
recreational purposes involved? Finally, we borrowed and adapted part of Katz’s 
historical modules on Statistics, but in keeping with our syllabus, more didactic 
resource material on this topic should be elaborated for future use.  

On the whole, however challenging, the experience proved to be rewarding in the 
end. Not only did the activity supply a collection of non-artificially designed 
problems, but it also helped to develop further skills, such as reading, writing and 
documenting. Above all, it was a means to show the original motivation of the 
normal curve and hence, to render it more understandable. This experience has shown 
that probability cannot be regarded as a collection of “polished” products within a 
deductive structured system, but rather as a system with a peculiar life (expectations, 
false expectations and false starts), as Guzmán (1993) put it, determined and 
influenced by external factors and connected with mathematical and non-
mathematical domains.  
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The arithmetic is part of mathematical knowledge based on the idea of the number. 

The teaching of intuitive calculation in Brazil in primary education level at the end of 

the nineteenth century and early twentieth century seems to be influenced directly by 

the “Cartas de Parker”. These arithmetic charts based on the ideas of Pestalozzi, 

Froebel and Herbart were diffused in arithmetic textbooks and educational journals, 

testimonies of their strong influence in Brazil. This article is based on methodological 

presuppositions of the Cultural History, of the History of School Disciplines and the 

studies on the School Culture. 

Keys-words: Arithmetic, Intuitive Calculation, Cartas de Parker, Grube’s Method, 
Elementary level. 

INTRODUCTION 

This article presents one of the partial results of the literature search undertaken 
within the framework of our thesis of doctorate, still in its phase of development. It 
aims at carrying out a historical survey of mathematical teaching in Brazilian primary 
education. We seeks to analyze the part that deals with “counting” in “reading, 
writing and counting”. Furthermore, we want better understand the process of its 
teaching by seeking answers to questions like: which textbooks were adopted for the 
teaching arithmetic? Which role held psychology in the evolution of the arithmetic’s 
textbooks for primary education? How were the contents of school arithmetic 
modified in the textbooks? 

By considering the contributions of Cultural History, of the History of School 
Disciplines and the studies on School Culture, this research privileges the 
documentary, textbook sources, school files, legislative texts related to teaching as 
well as the old materials of the daily newspaper (personal records of teachers, books 
of pupils, tests, school periodics and examination questions) [1]. 

According to Enfert (2003), contrary to what occurred for research on the history of 
primary education in French, the history of mathematics teaching at this level did not 
receive the attention which it deserves. Except for some cases of specialized studies, 
research, in a general way, mostly treated mathematics teaching at the secondary or 
tertiary levels. A history of this discipline was thus not treated yet as a whole 
(arithmetic, geometry, geometrical drawing, algebra, accountancy, etc), nor over its 
long duration. In the History of School Disciplines, Chervel (1998) defines a 
particular phenomenon which he calls “vulgata”. At each time, the teaching given by 
the teachers is, grosso modo, identical, for the same discipline and the same level. All 



 

 

 

35 

textbooks, or almost, say more or less the same thing then. The concepts, the adopted 
terminology, the succession of headings and chapters, the organization of the corpus 
of knowledge, even the examples or the types of practiced exercises are identical, 
except for some small variations. These are the variations, which can justify the 
publication of new textbooks although they present only tiny variations. 

The description and the analysis of the “vulgatas” are fundamental tasks for the 
historian of a School Discipline. If it is not possible to examine the whole of the 
leading production carefully, it rests with him to determine a corpus sufficiently 
representative of their various aspects; it is only in this manner, that he can arrive at 
concrete and conclusive results. 

Research in the mathematics teaching in Brazil at primary education level during the 
end of the XIXth century, particularly related to the textbooks written by 
representative authors of their community, revealed a reference particular to what is 
called the “Cartas de Parker”. Indeed, their contents seem a reference and a model 
adopted by various textbooks published at the beginning of the XXth century, and 
seem to be constituted in a “vulgata” which influences the teaching of the rudiments 
of calculation at this level of teaching. 

INTUITIVE CALCULATION 

According to Buisson (1880), intuitive calculation is a term, which means manner of 
teaching the first elements of calculation. This methodology borrowed from 
Germany, was diffused in Russia, in the Netherlands, in Sweden and found a strong 
adhesion in the United States. This form of teaching was called Grube’s method. 

In 1842, Grube published in Berlin the first edition of his Leitfaden für das Rechnen 

in der Elementarschule nach den Grunsätzen einer heuristischen Methode (Guide for 
calculation in the elementary classes, following the principles of a heuristic method). 
This “Essai d'instruction éducative”, as he called it, after causing warm discussions, 
was approved by teachers. This book was also in agreement with the new system of 
weight and measurements and reached in 1873 its 5th edition. Many textbooks, in all 
languages, reproduced, imitated or applied Grube’s method. 

Grube’s method consists in making pupils do themselves, by intuition, the 
fundamental operations of elementary calculation. Such a method aims at making 
known the numbers: knowing an object, does not only mean knowing its name, but 
also apprehend it in all its forms, in all its states, its various relations with other 
objects; it means being able to compare it with others, to follow the transformations, 
to write it and measure it, compose it and break it up, at will. 

By treating numbers then as unspecified objects to which familiarize pupils, Grube is 
opposed to the old sequence teaching who consists in learning successively, in first 
the addition, then the subtraction, finally the multiplication and the division. It 
devotes the first year of the elementary course to the study of the numbers from 1 to 
10; the second year is devoted to the numbers from 10 to 100; the third year being 
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devoted to the numbers from 100 to 1000, and so on, and the fourth and last year, 
being devoted to the study of fractions. 

This methodology does not prepare only the pupil to enter the everyday life and to 
study the arithmetic, but it offers as advantage over the other methods to meet the 
conditions necessary to the promotion of mental calculation. The pupils subjected to 
this method do not become slaves of the numbers, their pencils and their “armed 
operations”.  

Soldan (1878) exposes the six most important points of the Grube’s method of 
teaching: 

a) Language - the language is the only means by which the teacher will have access 
to what the pupil is thinking, because it is not requested any records of the 
calculations made by them. A complete answer must be required pupil, because it is 
only by it, that the teacher will be able to evaluate what the pupil has learnt or not. 

b) Questions - the teacher must avoid asking a great number of questions. The pupils 
must express themselves as often as possible by themselves. 

c) Individual recitation and jointly with the class - In order to bring animation to 
class, the answers to the questions must alternatively be given individually and in 
groups, mainly while following the numerical diagram [2]. 

d) Illustration - Each process and each example must be illustrated by means of 
objects that must necessarily be present in the class. 

e) Comparison and measurement - the contents of each session consist in comparing 
and measuring each new number with the precedent, by taking account of the relation 
of difference or quotient, by integrating the four fundamental rules. It must also give 
sufficient examples associated with this action, not only with what is called the pure 

number[3], but also with the numbers applied. 

f) Writing figures - As the method advances, the pupil must be able to draw the 
numerical diagrams.  

The study of Grube’s methodology makes it possible to advance that it had an 
influence in the publications of Mr. Parker. 
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Fig. 1 – The Grube’s Method 

INTUITIVE’S METHOD AND THE “CARTAS DE PARKER” (NUMERICAL 
DIAGRAMS) 

Research on the teaching of mathematics in Brazil in primary education at the end of 
the XIXth century through the sources, revealed a reference particular to Mr. Parker, 
this eminent American teacher, author of “Cartas de Parker”. 

According to Montagutelli (2000), Francis Wayland Parker (1837-1902) developed 
an educational system which was recognized by John Dewey as the “father of 
progressive education”, also inspiring a few years later Granville Stanley Hall. 
Coming from a family of educators, Parker has been already teacher with sixteen 
years, and later also served in the army at the time of the Secession War in the United 
States. At the end of the hostilities, he took the direction of a school in Ohio. In 1872, 
he made a study trip in Europe: in Germany, he got familiarized with Herbart’s 
pedagogy. It is possible that he took note of the Grube’s method then. In 1875, he 
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went back to the United States, where he became superviser of schools in the town of 
Quincy, Massachusetts. It is during this period that Parker developed the so-called 
“Quincy System”. In an atmosphere removed from the rigid discipline imposed in the 
majority of the schools of this time, the pupils read newspapers or texts composed by 
their teachers; starting from what they knew, they approached the new concepts 
concretely, and then worked in groups; they practiced also drawing and music. 

Parker published five books on education: Talks one Teaching [4] (New York, 1883); 
The Practical Teacher (1884); Course in Arithmetic (1884); Talks on Pedagogies 
(1894) and How to Teach Geography (1885). 

An important educational journal of the beginning of the XXth century, “Revista de 
Ensino”, created in 1902 by the Association of Public’s Teacher of São Paulo, 
devoted in several numbers, in its section called Teaching Pratice, several articles on 
the manner of using the “Cartas de Parker”. 

This educational publication, over a number of figures, published about fifty charts, 
diffusing them in Brazil. These charts concretize the appropriation by Parker of the 
numerical diagrams stated in Grube’s method. They represent the manner of treating 
the teaching of Arithmetic in an intuitive way. Moreover, they are presented in the 
form of a reference for the development of textbooks of mathematics intended for the 
first levels. 

 

 

 

 

 

 

 

Fig. 2 – 4th Carta de Parker  

By a heuristic process, i.e., a procedure, consisting in making the pupil discover what 
exactly he wants teach him, the teacher questioned the pupil in front of the chart. 
Example extracted the fourth chart (see Fig. 2): in the items h, i and l are drawn 
representations of the number ten. And by the observation, the pupil is brought to 
give his answers or to make remarks for the formation of this number. Thus, in the 
letter h, one needs two five to form the ten; in letter l we find three + three + four to 
form the ten; in letter i, one needs five times of two to form the ten. From this way the 
pupil learned how to compose and break up the number into equal or unequal parts. 
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The idea of the addition, subtraction, multiplication as of division is concomitantly 
subjacent with this process. 

In Brazil, in addition to the quotations and the articles of “Revista de Ensino” on 
“Cartas de Parker”, an important textbook from the beginning of the XXth century, 
written by Arnaldo de Oliveira Barreto, Série Graduada de Matemática Elementar, 
published by the Salesians, in São Paulo, in 1912, quotes the name of Parker and the 
“Cartas de Parker” in the foreword signed by Oscar Thompson, then director of the 
Normal School (Teacher School). There are also quotations in the presentation of the 
book and the final comments relating to the conferences pronounced by Parker. 

The effective methodology of teaching during this time treated intuitive method 
which had been adopted in second half of the XIXth century in the European, 
American and Brazilian schools; it was based on the ideas of Pestalozzi and Fröbel. 

For Valdemarin (1998), the intuitive method was influenced directly by the current 
empirist of philosophy, carried by Francis Bacon and John Locke (XVIIth century) by 
determining the procedures of teaching based on the observation. 

This method was presented in the form of a response to the abstract character and 
little utility of the instruction up to that point of use, by developing new didactic 
materials and a diversification of the teaching activities. It also brought with it of 
other innovations as the successive Universal Expositions which were organized for 
the diffusion of teaching practices, as those which were held in London (1862), in 
Paris (1867), Vienna (1873) or Philadelphia (1876). 

The presence of the intuitive method in teaching of arithmetic reveals a new teaching 
thought which is opposed to the preceding provisions of teaching where the 
memorizing of the knowledge was privileged. The “Cartas de Parker” are the 
elements which made it possible to associate the influence of this intuitive movement 
of the teaching of arithmetic in Brazil at this time, as attests of it the diffusion of this 
methodology by means of the disclosure of the educational journals, such as the 
“Revista do Ensino” and of the textbooks like “Aritmética Escolar” of Ramon Roca 
Dordal [5] or “Contador Infantil” of Heitor Lacerda [6], among others. 

CONCLUSION 

According to Chervel (1998), the first task of the historian of the School Disciplines 
is to study the explicit contents of disciplinary teaching. The study of a “vulgata”, 
configured as that of the “Cartas de Parker” enables us to connect the form and the 
contents of the teaching of mathematics in the primary education level at the end of 
the XIXth century - beginning of the XXth century in Brazil, an important element of 
the writing of the History of Mathematical Education in Brazil. 

Moreover, this study makes it possible to clarify the influence of the teaching ideas 
which circulated at the end of the XIXth century in Europe and which materialize in 
Brazil in the form of publications of textbooks and articles in educational journals. 
This direction seems to indicate the influence of intuitive teaching, conceived by their 
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European authors like a teaching instrument able not only to mitigate the inefficiency 
of school teaching, but also to reduce differences among the economic development, 
considering emergent industrial work required instructed people and able to reason 
quickly and in a creative way. 

According to Valdemarin (1998) this inefficiency of school teaching was 
characterized by the training of pupils who insufficiently controlled the reading and 
the writing and whose not very satisfactory concepts of calculation, mainly because 
of the practice to exclusively base the training on the memory, to give the priority to 
the abstraction, to develop the repetition with the detriment of comprehension and to 
impose contents without examination and of the discussion. 

The explicit proposal of the “Cartas de Parker” seems to be in phase with the one 
time aspirations which rejects the methods primarily based on the memory and 
develops the observation like a means of effective training of the training of 
calculation. 

It is through historical studies that we have access the way in which the large 
teaching thinkers thought the teaching of mathematics and of which echo it had in 
Brazil. 

NOTES 

1. This research is subordinated to one of the thematic projects which are developed by the 
GHEMAT – Grupo de Pesquisa de História da Educação Matemática do Brasil (Group of Search 
for History of the Mathematical Education of Brazil): “A EDUCAÇÃO MATEMÁTICA NA 
ESCOLA DE PRIMEIRAS LETRAS, 1850-1950” coordinated by Prof. Dr. Wagner Rodrigues 
Valente and financed by the FAPESP. Through a financial support obtained from CNPq – Conselho 
Nacional de Desenvolvimento Científico e Tecnológico (National Council of Technological and 
Scientific Development), I have been developed my research of doctorate at INRP/SHE (Institut 
National Recherche Pédagogique, Service d’Histoire de l’Education – Paris – France) under 
supervision of Prof. Dr. Alain Chopin (05/2008 to 04/2009). 

2. The numerical diagram of the Grube’s method will be presented later on in this article as the 
“Cartas de Parker”. 

3. A pure number, also called an abstracted number, which is that makes mention only quantity. 
Four, thirty, twelve are examples of pure numbers. Applied to an object, it will be called a number 

applied or numbers concrete. Thirty apples, four trees, three meters, are examples of numbers 

applied or concrete. 

4. This book was translated into portuguese by Arnaldo de Oliveira Barreto in 1909 and edited by 
Livraria Francisco Alves : “As Conferências de Parker” 

5. See article Costa, D.A., Valente, W.R. (2007). Análise da Arithmética Escolar de Ramon Roca 
Dordal. In: Simpósio Internacional do Livro Didático, 2007, São Paulo. Livro Didático - Educação 

e memória. São Paulo: Centro de Memória da Educação – FEUSP, v.1. 

6. See Revista do Ensino, 1902, p.146. 
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HISTORICAL PICTURES FOR ACTING ON THE VIEW OF 
MATHEMATICS 

Adriano Demattè & Fulvia Furinghetti 

GREMG, Dipartimento di Matematica, University of Genoa 

The article illustrates the underlying philosophy of an in progress book in which 

pictures taken from historical books are used to hint some fundamental ideas of the 

history of mathematics. Both epistemological and disciplinary issues are taken into 
account. The aim of the book is to let its potential readers know different aspects of 

mathematics as a science operating inside the socio-cultural context. 

Keywords: historical images, original sources, mathematics view. 

INTRODUCTION 

This paper deals with the problem of the view of mathematics held by students and 
the means suitable to act on it. In previous works we have studied students’ view of 
mathematics as a socio-cultural process with particular reference to the historical 
development, see (Demattè & Furinghetti, 1999). Our main conclusion was that this 
view was very narrow focused and based on common myths on mathematics. To 
answer the question “How to act on the image of mathematics held by students?” a 
book has been designed by one of the authors (A. D.) addressed to students of the 
final years of secondary school (16 years old onward) or readers who are interested in 
the popularisation of mathematics. The book is based on pictures taken from 
historical sources. Pictures have been largely used in history for communicating 
mathematical ideas, see (Mazzolini, 1993), and thus it is not difficult to collect 
materials for composing such a book. Words accompany pictures in order to create a 
unitary discourse and to focus on some aspects. Pictures strengthen what the verbal 
part say, like in a natural history museum where things and words, verbal and non-
verbal communication coexist. Knowledge required for using the book in classroom 
(or elsewhere) is confined to elementary mathematics. As we will see in sections 3 
and 4 some chapters are more suitable to develop mathematical topics stricto sensu, 
other are more oriented to raise reflections on historical-epistemological questions.  

THE ROLE OF PICTURES 

The idea of this book does not come out of the blue. We have already described in 
(Demattè, 2005; 2006a; 2006b) our work with pictures in the classroom. In particular, 
in the latter two papers we have discussed how students in front of a historical figure 
are able to mobilize some kind of narratives and to produce conjectures. This is due 
to the particular nature of the information provided by figures. Often images show 
supplemental details, which are not pertinent to the specificity of discourse. Readers 
can interpret these images in different ways. A discourse follows a logical track 
(sometimes very rigorous), a picture often permits freedom to the interpreter. 
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Therefore it is ‘friendly’ i.e. rich in possibility of reflections and personal reasoning. 
Our claim may be illustrated by some examples taken from the book. 

 

 

 

 

 

Fig. 1. Oronce Finé, Protomathesis, 1532 

Pictures like Fig. 1 are aimed at showing how an instrument can be used, but the 
painter has added many details (hills, grass, trees, birds, elegant dress of the man) 
which make the scene realistic. The draw of the right-angled triangle and of the 
instrument (a “quadrant in a fourth part of a circle”) focuses on mathematical aspects. 

To reflect on the use of the picture in Fig. 1 in classroom raises the following 
questions for the researcher: Can students appreciate these kinds of images? Do 
pictures like Fig. 1 make them want to use the facilities offered by mathematics? Do 
students see the relationship between the concepts and procedures shown in historical 
pictures and what they learn in school today? Maybe the answer is no, for each 
question. In any case the mathematics view suggested by this kind of pictures appears 
potentially positive in the fact that they address the attention to geometrical details 
and, in the same time, stimulate guessing the finalities of the action illustrated in the 
picture. A scene like the one in Fig. 1 suggests a simple story, a narration with a 
precise structure (some events happen before, some after, a goal of the action – 
including the implicit use of mathematics - is noticeable). (Demattè, 2006a; 2006b) 
report on an experiment where students were asked to write how they interpret Fig. 2.  

 
 
 
 
 
 
 
 

 

 

 

Fig. 2. A mural painted at Abd-el-Qurna, Egypt, around 1400 B.C 



 

 

 

44 

Some protocols show that they followed the pattern of a narrative. Because of the 
need to complete the story, students formulated also conjectures (e.g. the kings’ 
servants on the cart have the task of rewriting the data and, as the student write, “the 
aim of giving an account of them to the king”). 

Students are rather naturally brought to formulate conjectures, which are coherent 
with context and with elements present in the scene, if they have adequate 
knowledge. To interpret mathematical aspects in the previous image from Finé’s 
Protomathesis or in the following Fig. 3 the concept of similarity among triangles is 
required. But many other aspects require more knowledge: e.g. Why the square? 
Which is the purpose of the action of the man in the picture? etc. 

 

 

 

 

Fig. 3. Oronce Finé, Protomathesis, 1532 

PICTURES AND MATHEMATICAL TOPICS 

In the book the focus is on some grounding mathematical ideas that may be 
elaborated through the history of mathematics. These ideas regard the main chapters 
of mathematics (numeration, algebra, probability, etc., see Appendix). Some ideas are 
inherent to procedures and concepts: images suggest first of all the incipit of 
mathematical reasoning and its global structure. For example, the reader may reflect 
on the different ways of approaching the same theorem by considering the Chinese 
theorem of Pythagoras (Fig. 4) and what is done using Cartesian graphs. 

 

 

 

 

 

 

Fig. 4. ‘Pythagorean’ theorem from Chou Pei Suan Ching, about 500-200 b.C. 

Moreover pictures, suggest at a glance some metacognitive information e.g. the level 
of complexity and the need of a detailed mathematical reasoning, as exemplified by 
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the Leibnizian graphs shown in Fig. 5 from Nova methodus pro maximis et minimis, 

itemque tangentibus, quae nec fractas, nec irrationales quantitates moratur, et 

singulare pro illis calculi genus (A new method for maxima and minima as well as 
tangents, which is impeded neither by fractional nor by irrational quantities, and a 
remarkable type of calculus for this), see (Dupont & Roero, 1991). 

 

Fig. 5. Gottfried Wilhelm Leibniz, Nova Methodus …, 1684 

17. PICTURES AND HISTORICAL-EPISTEMOLOGICAL IDEAS 

Some chapters address historical and socio-cultural aspects such as: reckoning and 
measuring as answers to problems of human activities. The students may perceive the 
hypothetical-deductive structure of mathematics as a model for other branches of the 
human knowledge such as philosophy and economy, or for every day life. Through 
these chapters some myths about mathematics may be discussed: the development of 
mathematics seen as a linear progress from ancient to contemporary times, euro 
centrism, independence from external factors. 

In our previous papers, see (Demattè & Furinghetti, 1999; Furinghetti, 2007) we 
discussed how students and teachers may conceive the development of mathematics 
just as an evolutionary process. In doing that they loose the richness of the path of 
mathematical ideas that are lateral to the main stream of the development of 
mathematical concepts. Moreover we know that the intertwining and the reciprocal 
influence of internalist and esternalist factors is a powerful perspective for studying 
mathematical concepts and its development, as shown in the paper (Radford, 2006). 
Mathematics has changed during the time but has become also different in different 
countries and cultural contexts. 
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Ethnomathematics (see a product in Fig. 6) is a fruitful branch of research in 
education. It is about learning mathematics connected to other areas, to social and 
environmental problems (Joseph, 2003; Katsap, 2006). It lead to reflect on the fact 
that not only the European mathematics is the ‘true mathematics’ 

Fig. 6. The most elaborate altar from the Indian Sulbasutras (the first part probably 
was written in the 6th century B.C.). Many of the triangular and trapezoidal altars 
described in the Sulbasutras use then theorem of Pythagoras 

Some external factors influence the daily work of researchers: relations among 
colleagues (well known ‘spy stories’ regarded 16th century Italian algebraists, see Fig. 
7), salary (not ethically impeccable ‘involvements’ come from the fact that ancient 
and modern war requires a wide apparatus of mathematical knowledge), national 
policy pushed by the dominating class, see (Barnett, 2006; Swetz, 1987), etc. This is 
enough to confirm that context influences advancement of science. 

 

 

 

 

Fig. 7. Italian mathematicians Niccolò Fontana (“Tartaglia”; 1499-1557) and 
Gerolamo Cardano (1501-1576) 

MATHEMATICS VIEW 

The ultimate aim of the book is to suggest a different mathematics view. Every 
chapter ends with a discussion about beliefs about the nature of mathematics, which 
are connected with the aspect treated in it. This part of the book regards factors that 
are not always made explicit in the classroom, but influence the personal relation 
with mathematics. We deem it is important to stimulate students’ awareness on these 
factors. In the book the pictures and the related comments show unusual, but in our 
opinion more realistic, aspects of mathematics. As discussed above, mathematics: 

! is an historical construction which is socially and culturally bounded, therefore 
different cultural context have produced different forms of mathematics; 
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! is used in many professions and jobs; is present in the everyday life; has 
epistemological and also psychological aspects which are intertwined (such as the 
role of error and its acceptance by individuals); 
! has relationships with other disciplines; requires debate, communication and 
involvement and may also originate wish to investigate. 

We briefly recall some beliefs widespread among students and ordinary people that 
were detected in our study (Demattè & Furinghetti, 1999). These are some of the 
beliefs considered in the book with respect to the content of every chapter: it is better 
if I remember rules by heart and I don’t attempt to reason with my brain; when I 
solve a mathematical problem I know that there is only one exact solution; 
mathematics learnt in school has not a practical use; not everybody has a 
‘mathematical mind’; creativity is not necessary in mathematical reasoning; different 
topics, such as arithmetic, geometry, algebra, must be taught and learnt separately 
because they don’t have any connections; in mathematics approximated results are 
incorrect and do not give useful information; in mathematics errors are absolutely 
negative experiences; mathematics doesn’t depend on culture; I think that men have 
began to use the signs +, -, x, : before Christ; if I study alone (not with mates) I’ll 
have better results in mathematics. 

FINAL REMARKS 

Only a few parts of the chapters have been administered in the classroom. The book 
is in progress and no student read it until now. It will be about 180 pages. After 
completing the work it is planned to propose some students to read at least a few 
pages, and to collect their opinions by means of questionnaires or an interviews. 

At the moment some questions are waiting to be answered: 
" How will readers consider the kind of mathematics which is described in the 

book? Will they establish connections with mathematics they learned at school 
or will they consider it an ‘extraneous entity’? 

" What beliefs could change learning the history of mathematics? What activities 
could be more useful?  

" Learning history (in a broad sense) is also to remember fact and dates. What 
historical information could mathematics teacher require the students to 
remember? Could pictures create an opportunity to remember significant 
aspects of the history of mathematics? 

" In our opinion, the citizen mathematics education requires new didactical 
choices. Could historical-epistemological analysis of mathematics replace 
some parts of traditional curriculum? 
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APPENDIX. The structure of the book 

In the book there is a preface explaining the aim and the rationale of the work and 30 
chapters whose titles and some representative figures are shown below. 

 

Legenda 
E: Chapters mainly concerning 

historical or Epistemological ideas. 

M: Chapters over mainly concerning 

relevant Mathematical topics. 

1. The first 

files of data 

(M*) 

 

2. Mathematics for 

administering a Nation 

(E) 

 

3. Is mathematics we 

learn at school 

ancient? (E) 

 

4. How to write a 

number (M) 

 

5. Algebra begins (M) 

 

6. Mathematics is full 

of errors (E) 

 

E 

& 

A B ' 
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7. 

Pytha

goras 

in 

Chin

a (M) 

 8. A model to imitate 

(E) 

 

9. What is geniality? (E) 

 

10. Does it depend on 

material we have? (E) 

 

11. Mathematical 

knowledge doesn’t 

“accumulate in layers” 

(E) 

 

12. Recreational 

problems (M) 

 

13. Does an authority 

hold knowledge? (E) 

 

14. Mathematics is 

culture (E) 

 

15. Masters of abacus 

(E) 

 

16.Mathematics and 

trade (E) 

 

17. Geometry for 

builders (M) 

 18. Mathematics and 

politics (E) 
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19. More recent than we 

think (E) 

 

20. Is mathematics the 

same everywhere? (E) 

 

21. Problems of 

paternity (E) 

 

 

22. Mathematics and 

war (E) 

 

23. Let’s bet everything 

(M) 

 

24. Calculus (M) 

 

25. Mathematics and 

other sciences (E) 

 

26. Geometry of 

position (M) 

 

27. Beyond infinity (M) 

 

28. Etnomathematics 

(E) 

 
29. Past, present and 

future (E) 

 

30. Imagine a 

mathematician (E) 
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STUDENTS’ BELIEFS ABOUT THE EVOLUTION 

AND DEVELOPMENT OF MATHEMATICS 

Uffe Thomas Jankvist 

IMFUFA, Department of Science, Systems and Models, Roskilde University 

 

The paper is an empirical study of students’ beliefs about the history of mathematics. 

26 students in an upper secondary mathematics class were exposed to a line of 

questions concerning the evolution and development of mathematics in the form of a 

questionnaire and follow-up interviews. In the paper it is argued that the existing 

literature on students’ beliefs, in general, lacks a discussion of goals dealing with, for 

instance, desirable beliefs among students in order to provide them with a more 

coherent image of mathematics as a discipline. A couple of descriptions from the 

Danish literature and upper secondary regulations are provided as an example of 

such a dimension. The concrete student beliefs from the research study are evaluated 

against these descriptions. 

KEYWORDS: History and epistemology of mathematics; students’ beliefs and 
images; a goal-oriented dimension for students’ beliefs.  

INTRODUCTION 

Beliefs about the history of mathematics is a topic which is touched upon from time 
to time in the literature on history in mathematics education, e.g. in Furinghetti 
(2007) and Philippou and Christou (1998). However, when scanning these samples, 
one soon finds that these concern the beliefs of in-service or pre-service teachers. 
Studies on students’ beliefs about the history of mathematics seem to be rather poorly 
represented in the literature, if not altogether absent.1 One reason for this that I can 
think of is that, in general, studies of beliefs in mathematics education are conducted 
with the purpose of improving mathematical thinking, learning, and instruction.2 
Beliefs, both cognitive and affective ones,3 are investigated in order to identify the 
‘ingredients’ which do or do not make students capable of solving mathematical tasks 
or teachers capable of teaching differently and/or more effectively. Certain beliefs are 
identified as advantageous in the learning of certain mathematical contents, the 
solving of related tasks, etc., and educational studies are then conducted on how to 
change already existing beliefs into these more favorable ones. In this sense beliefs 
are regarded as means – or tools – to achieve understanding in the individuals’ 
constructive learning process. Only rarely is providing students or teachers with 
certain beliefs, e.g. by changing existing ones, about mathematics or mathematics as 
a discipline considered as a goal in itself. And when this is done, the term ‘beliefs’ is 
usually not used. Instead mathematical appreciation, mathematical awareness, or 
providing students with a more profound image of what mathematics is, are the 
words or phrases more commonly used (e.g. Furinghetti, 1993; Niss, 1994; Ernest, 
1998).  
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It seems to me that the beliefs discussion in mathematics education lacks a goal-
oriented dimension. A dimension which addresses students’ mathematical world view 
and proposes and evaluates some desirable beliefs in order to turn students into more 
critical citizens by providing them with intelligent and concerned citizenship and with 
some Allgemeinbildung in general (Niss, 1994). That is to say, to provide students 
with a more coherent image of mathematics as a discipline, the influence of 
mathematics in society and culture, the impact of society and culture on mathematics, 
and the historical evolution and development of mathematics as a product of time and 
space, to mention a few of the more ‘pressing’ ones. Occasionally researchers will 
touch upon these issues in the form of personal opinions, e.g. in curriculum 
development. However, a dimension about ‘beliefs about desirable beliefs’ – meta-
beliefs we may call them – can only be addressed properly if the meta-beliefs are 
articulated as such, i.e. as goals in themselves.  

In this paper I shall first present some extracts from the 2007-regulations for the 
Danish upper secondary mathematics program and the Danish report on 
competencies and learning of mathematics, the so-called KOM-report, which may 
serve as such a goal-oriented dimension for students’ beliefs. Especially I shall focus 
on students’ beliefs concerning the history of mathematics. Secondly, I shall report 
on a piece of empirical research in which a number of students were asked about their 
beliefs concerning the evolution and development of mathematics.4 Thirdly, these 
students’ beliefs are analyzed and evaluated against the goal-oriented descriptions. 
The paper is ended with some final remarks and reflections on the presented 
empirical data and the larger research study which they are part of. 

THE DANISH CONTEXT 

Since 1987 history of mathematics has been part of the formal regulations for the 
Danish upper secondary mathematics program (see e.g. Fauvel and van Maanen, 
2000, pp. 5-7), and with the newest reform and the present regulations of 2007 this 
part has become more dominant. Students are now expected to be able to 
“demonstrate knowledge about the evolution of mathematics and its interaction with 
the historical, the scientific, and the cultural evolution”, knowledge acquired through 
teaching modules on history of mathematics (Undervisningsministeriet, 2007, my 
translation from Danish).5 The official regulations for the Danish upper secondary 
mathematics program of 2007 are to some extent based on the Danish report 
Competencies and Learning of Mathematics, the so-called KOM-report, (Niss and 
Jensen, 2002, title translated from Danish) where it says the following about history: 

In the teaching of mathematics at the upper secondary level the students must acquire 
knowledge about the historical evolution within selected areas of the mathematics which 
is part of the level in question. The central forces in the historical evolution must be 
discussed including the influence from different areas of application. Through this the 
students must develop a knowledge and an understanding of mathematics as being 
created by human beings and, in fact, having undergone an historical evolution – and not 
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just being something which has always been or suddenly arisen out of thin air. (Niss and 
Jensen, 2002, p. 268, my translation from Danish) 
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In the report, the focus of integrating history of mathematics is discussed in terms of 
a certain kind of overview and judgment which the students should acquire as part of 
their mathematics education.  

The form of overview and judgment should not be confused with knowledge of ‘the 
history of mathematics’ viewed as an independent subject. The focus is on the actual fact 
that mathematics has developed in culturally and socially determined environments, and 
subject to the motivations and mechanisms which are responsible for this development. 
On the other hand it is obvious that if overview and judgment regarding this development 
is to have solidness, it must rest on concrete examples from the history of mathematics. 
(Niss and Jensen, 2002, p. 68, my translation from Danish) 

The 2007-regulations describe the “identity” of mathematics in the following way: 

Mathematics builds upon abstraction and logical thinking and embraces a long line of 
methods for modeling and problem treatment. Mathematics is indispensable in many 
professions, in natural science and technology, in medicine and ecology, in economics 
and social sciences, and as a platform for political decision making. At the same time 
mathematics is vital in the everyday. The expanded use of mathematics is the result of the 
abstract nature of the subject and reflects the knowledge that various very different 
phenomena behave uniformly. When hypotheses and theories are formulated in the 
language of mathematics new insight is often gained hereby. Mathematics has 
accompanied the evolution of cultures since the earliest civilizations and human beings’ 
first considerations about number and form. Mathematics as a scientific discipline has 
evolved in a continual interrelationship between application and construction of theory. 
(Undervisningsministeriet, 2007, my translation from Danish) 

Thus, when the students are to “demonstrate knowledge about the evolution of 
mathematics” etc., as stated in the academic goals of the regulations, one must 
assume that it is within the frame of this “identity” that they are expected to do so. 
Another way of phrasing this is to say that one purpose of the teaching of 
mathematics at the Danish upper secondary level is to mold the students’ beliefs 
about mathematics according to the above description of identity. The purpose of 
including elements of the history of mathematics has to do with showing the students 
that mathematics is dependent on time and space, culture and society, that 
mathematics is not ‘God given’, that humans play an essential role in the 
development of it, etc., etc. 

STUDENTS’ BELIEFS ABOUT THE ‘IDENTITY’ OF MATHEMATICS 

In the beginning of 2007, I conducted a questionnaire and interview research study of 
second year upper secondary students’ (age 17-18) beliefs about the ‘identity’ of 
mathematics. A number of these questions had to do with the evolution and 
development of mathematics. In the following I shall present the students’ answers to 
seven of these questions. All in all 26 students answered the questionnaire. The 
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students’ questionnaire answers have been indexed in the following manner: 
one<few<some<many<the majority<the far majority, a partition which roughly 
corresponds to the percentage intervals: 0-5%; 6-15%; 16-35%; 36-50%; 51-85%; 
86-100%. Based on the questionnaire answers 12 students were chosen as 
representatives for the class in general, and these 12 students were interviewed about 
their answers. All quotes from the questionnaires and the interviews (the ones in 
blue) have been translated from Danish. 

1. How do you think that the mathematics in your textbooks came into existence? 

The majority of the students believe that the mathematics is due to people in history 
who have been wondering or been curious about something, and therefore attempted 
to explain what they observed. Many of the students who think so believe the people 
responsible for the mathematics are some special, wise persons and great “minds of 
ideas”, a few mention Pythagoras. One student suggests that the ones responsible are 
“some very patient, half autistic people who have been wondering about the 
connections, rules, etc. between things, e.g. the angles of triangles, the lengths of the 
sides, etc.” Some believe the mathematics to be an accumulation of experiences, 
observations, and experiments, possibly anchored in nature. A few of these 
emphasize the cumulative nature of mathematics. Others believe that mathematics 
was created because of a need, for instance in connection to trade or “in order to 
make things more manageable”. The interviews provided no additional information. 

2. When do you think it came into existence? 

The majority believe that the mathematics in their textbooks came into existence 
“sometime long ago”. The suggestions to exactly when are, however, many and 
different: “from even before da Vinci’s time!”; “when the numbers were invented”; 
“when we began using Arabic numerals”; “way before it says in the books”. Some 
points to antiquity and provide as argument that “the construction of, for instance, the 
pyramids must have required at least some mathematics”. One of the more interesting 
answers goes: “Long, long ago it all began and since then it has continued. But I am 
confident that the development goes slower and slower, because you eventually know 
quite a bit.” 

Out of this majority of students, some share the perception that mathematics always 
has existed, or at least has existed as long as human beings have been around. One 
says: “Mathematics in general has existed since the dawn of time, but highly 
developed [mathematics] has only emerged within the last 200-100 years.” Only one 
student believes the mathematics in the textbooks to be of a more recent date, and he 
is not afraid to fix this to “40 years ago”. 

In the follow-up interviews, events in the history of mathematics were occasionally 
fixed with some kind of accuracy, for instance, the beginning of mathematics to 
4000-5000 years ago; Pythagoras to the first couple of centuries; and Fermat’s last 
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theorem to “the Middle Ages or something”. But only few students were able to do 
this. Whether this is due to lack of knowledge about history of mathematics or lack of 
knowledge about history in general, or maybe both, is not to say. Finally, one of the 
students seemed very strong in her belief that it was impossible to practice 
mathematics without the Arabic numerals. When asked why not, she answered: “the 
mathematics you do today, you wouldn’t have been able to do that...” 

3. Why do you think it came into existence? 

The majority of students believe that there was a need to have mathematics at one’s 
disposal. A few even talk about a necessity: “For example with constructions it has 
been important to be able to predict/calculate if, for instance, the walls can support 
the roof etc. Better to find errors on the drawing board than when the final 
construction collapses.” Many students mention the development of society and 
related aspects as the main causes. Some again mention that people have been 
wondering, been curious about something, and followed their ideas and impulses. 
One student ascribes the cause to “The will of God – or Big Bang, if you like.” In the 
follow-up interviews one student said: “Because people had too much time on their 
hands, for example, so they were given jobs as mathematicians.” 

4. Are the negative numbers discovered or invented? Why? 

In the answering of this question the class was divided in two approximately equal 
parts, one in favor of discovery and the other in favor of invention. The 
argumentations provided were quite different though. A few students believed the 
negatives to have been discovered in connection with or immediately after the 
positive numbers. Others believed that they always had been there, but that it might 
have taken some time to “learn to express them” or that people were “able to see it, 
but might have had difficulties explaining it”. Among the arguments for invention we 
find: “They are invented, I think, because you would get something wrong if they 
weren’t there”; “On the face of it, invented because you can’t have something which 
isn’t there”; “They are invented because you needed values smaller than 0”; “Think 
they are invented since it appears strange that a number all of a sudden should fall 
from the sky or something”. From time to time the same arguments were used for 
both discovery and invention: “Discovered. If we imagine a man who has bought a 
cow, but doesn’t have money enough, so that he owes money away, i.e. a negative 
number”; “Discovered. If you were in debt to someone, maybe”. One student plays it 
safer: “I’d think they were invented because almost all mathematics is invented, but 
at the same time also discovered.” The interviews provided no additional information. 

5. Do you believe that mathematics in general is something you discover or invent? 

The majority of the students believe that mathematics in general is something you 
discover. Only a few believe that it is something you invent. More students, though, 
believe that it might be a mix of the two. Many of those who believed that negative 
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numbers were something discovered stick to this point of view for mathematics in 
general. A few of the answers are: “Discover. I don’t think you can invent 
mathematics – it is something ‘abstract’ you find with already existing things.”; 
“Discover. Because mathematics is already invented. What happens today is only that 
you discover new elements in it.” A lot of those who believed that negative numbers 
were discovered and a few of those who believed them to be invented now seem to 
think both: “Many things might begin as an invention, but afterwards they are 
explored and people discover new elements in the ‘invention’ in question”; “Both, [I] 
think that you discover a problem and then solve it by inventing a solution or 
applying already known rules of calculation”; “You discover formulas after having 
discovered relationships”. Some of those who believed negative numbers to be 
invented now believe mathematics in general to be discovered: “Mathematics is all 
over – in our society, our surroundings and in the things we do. Therefore I do not 
believe mathematics to be something you invent, but on the contrary something you 
discover along the way. Of course, it might be difficult to say precisely, because 
where is the line drawn between discovery and invention?” One of the answers touch 
upon the question of what mathematics ‘really’ is: “Good question... very 
philosophical. I think there are many different standpoints to this. I personally believe 
that it is something you discover. Numbers and all the discoveries already made are 
all connected. So for me it is more a world you enter into than one you make.” 

In the follow-up interviews the student responsible for the last remark explained 
further: “Well, I see it as if mathematics is just there, like all natural science as, for 
instance, outer space. Outer space is there and now we are just discovering it and 
learning what it is. That’s what I think: It’s the same thing with mathematics.” When 
the remaining interviewees in favor of discovery were asked if the ‘exploration’ of 
mathematics corresponds to the exploration of the universe they all confirmed this 
belief. That is to say that they believed mathematics to always have existed, or as one 
student phrased it: “Mathematics has always been there, in the form of chemistry or 
something like that at the creation of Earth. And then we haven’t found out about it 
until later.” Or another one: “I think it has always been there, but I just think that the 
human beings are exploring mathematics more and more and are discovering new 
things.” One of the students who believed mathematics in general to be discovered 
thought that negative numbers were invented: “It is something you have made up 
because you had to. Well, it isn’t something written down somewhere from all 
eternity or from God, and which has just been there. It is something you invent 
because there is a need. If you invent a chair, right, then it is because you have a need 
to sit down.” As an answer this even links to the previous question of why 
mathematics came into existence.  

6. Do you think mathematics has a greater or lesser influence in society today than 

100 years ago? 
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The far majority of the students believe greater. This answer is in general based on 
the increased amount of technology in our everyday society. Answers as “definitely, 
more computer=more mathematics” and “everything develops and everything has to 
be high-technology” are often given. A few of those who believe that mathematics 
has a greater influence today also points to economic affairs as the reason, or that 
“the use of mathematics has become more advanced in our time”. Some think that 
mathematics has the same influence today as it had 100 years ago, and only very few 
believe that the influence today is lesser. One of the more ‘sensational’ answers of the 
latter kind is: “No, I don’t believe that, because even though we use mathematics a lot 
more in space etc. we have modern machines to do it.” 

The follow-up interviews to a large degree confirm the beliefs described above. To 
the deepening question of why a student found the influence today to be greater, she 
answered: 

Student: Because today you can, for instance, get an education at... or study mathematics 
at the university and things like that, and that you couldn’t do a hundred years ago. [...] 

Interviewer: So it is something relatively new that you can study mathematics at the 

university? 

Student: No not new, but I do believe at a higher level. That is, you didn’t know as many 
things back then as you do today. 

Interviewer: And you couldn’t get an education as a mathematician in the same way, you 

think? 

Student: No. 

The student who argued lesser influence due to the use of modern machines is also 
given the opportunity to expand on her view in the interviews. She finds, amongst 
other things, that mathematics appears less present because we rely on technical aids 
to a great extent, and because the use of mathematics is mostly about “pushing some 
buttons”. 

7. Do you think that mathematics can become obsolete? If yes, in what way? 

To this question the far majority answered a clear no or that it appeared unlikely, for 
instance: “a proof is a proof” or “the basic things we build our mathematical 
development on are so used and tested that it won’t become obsolete”. Some provide 
a no with modifications: “Don’t think that it can become obsolete, but that 
theorems/theories can be disproved and thereby provide a foundation for ‘new 
mathematics’.” Or more striking: “No, but there are probably some things which will 
not be used so much in the future: Such as vectors.” Only a few answer yes or maybe. 
The follow-up interviews provided no additional information. 

EVALUATING STUDENTS’ BELIEFS AGAINST THE ‘GOALS’ 
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How do the above presentation of students’ beliefs about the evolution and 
development of mathematics correspond with the goal-oriented description of 
overview and judgment in the KOM-report and the ‘identity’ of mathematics in the 
2007-regulations? For example, are students able to “demonstrate [display] 
knowledge about the evolution of mathematics and its interaction with the historical, 
the scientific, and the cultural evolution”? Overall the students’ answers to some of 
the questions appear rather diffuse, but let us take them from the beginning. As an 
answer to question 1 the majority seem to believe that mathematics has developed 
and evolved as a result of peoples’ personal curiosity and wonder. Only few mention 
extrinsic reasons such as trade. In question 3, however, there is an agreement that 
mathematics has come into existence because of a need or even as a necessity. Thus, 
there is a slight incongruence between the answers of the majority to questions 1 and 
3. Of course, one may interpret it as if the inner motivation and curiosity of people to 
get involved with mathematics have been turned on by outer circumstances, which 
for certain incidences in history would be correct. The fact that mathematics itself 
besides being driven by outer driving forces also is driven by inner driving forces 
(forces which not only concern the personal motivation of a single mathematician, 
but the intriguing problems within mathematics itself) is not an aspect which the 
students seem to be aware of. And concrete examples from the history of 
mathematics, in the form of the KOM-report’s talk of “solidness” (cf. page 3), is not 
something which the students seem able to provide either. One student mentions the 
building of the pyramids as an example of the need of mathematics in older times, but 
if this answer is founded in a concrete knowledge about mathematics in ancient Egypt 
or if it is merely evidence of the student being able to think for himself is not to say. 
In any case he does not provide any concrete examples of Egyptian mathematics.  

In the answers to question 2 there seem to be an agreement that mathematics is ‘old’. 
One student implies that da Vinci is old and that mathematics is older than him. 
However, only very few are capable of providing years on the origin of mathematics 
as well as on concrete mathematical results. That some students believe that 
mathematics only could come into existence by aid of the Arabic numerals does not 
strengthen the interpretation that the students possess knowledge about the evolution 
of mathematics in interplay with historical and cultural events either. 

Despite some discrepancies with the answers of question 4, the majority in question 5 
give expression to the fact that they believe mathematics in general to be discovered. 
In a Danish educational context this may appear surprising since, as Hansen (2001, p. 
71, my translation from Danish) puts it: “it is clear that the strong position of 
constructivism in school circles fertilizes the ground for a more radical constructivist 
perception of the entire nature of mathematics. Because of the pedagogical 
constructivism in schools, children and young people are likely to have difficulties 
believing in special existence of mathematical quantities, figures, and concepts.” Of 
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course there are students who are inclined toward a view of mathematics in general as 
something invented, but they are few in number. The majority gives expression to a 
Platonic stance. With the words of one of the students, it is “a world you enter into” – 
a world of ideas – where you explore the already existing mathematical objects in a 
similar way as we are exploring the Milky Way and the rest of the universe our planet 
is part of. Certainly such a view is bound to play down the creative side of 
mathematics as a human activity, and as a consequence perhaps also the KOM-
report’s more ‘humanistic’ view of mathematics as something being created by 
human beings and not just suddenly having popped out of thin air (cf. page 2). On the 
other hand, the students seem to have a quite good understanding of the fact that 
mathematics today has a much greater influence in society than it did 100 years ago 
(question 6). Again it is computers and other technology that are given credit for this. 
The fact that students only pay scant attention to economic affairs and political 
decision-making, e.g. based on mathematical models, may be seen as a consequence 
of the invisibility of mathematics in society (Niss, 1994). One student touched upon 
this when she said that mathematics appears less present due to use of technology. 
Another example is the student who in question 2 believed that the development of 
mathematics was happening at a slower and slower pace and who in the interviews 
explained herself: 

Yes, but they just discovered more a long time ago, didn’t they? It isn’t very often you 
hear about someone who has discovered something new within mathematics, is it? 
Maybe it’s just me who isn’t enough of a mathematics geek to be told about it. But it just 
seems to me that nothing is really happening. Stu�  is happening more often within 
natural science: now they have found a method to see the fetus at a very early stage by 
means of a new type of scanning or something. 

This student seldom hears about new discoveries in mathematics, even though she is 
exposed to the subject several times a week, therefore she believes nothing is 
happening. Besides this, her remark also touches upon one of the differences between 
mathematics and the natural sciences: just because mathematics now is able to prove 
Fermat’s last theorem or the Poincaré conjecture this is not something which will 
change our everyday or society neither tomorrow nor in 50 years (most likely), 
something which would be far more likely for discoveries in physics, chemistry, or 
biology – and to a larger extent for technology basing itself on these disciplines.  

The students also seem to have an understanding of mathematics as a science which 
is not likely to become obsolete (question 7). This has to do with the ability of 
mathematics to most often include previous results as special cases in more general 
and abstract new constructs. Of course, one might mean many different things with 
‘obsolete’, and the inclusion in theory building is only one aspect. Another way to see 
it would be to think of concrete applications of mathematics. In this respect, the 
history of mathematics provides examples of very old pure mathematics which 
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suddenly finds its way into an application (e.g. the use of old number theoretic results 
in RSA cryptography), but probably the history contains even more examples of 
pieces of mathematics which until now have not, or maybe never will, find their way 
into applications. But the point is that one can never tell what will and what won’t. In 
any case, one could have hoped that the students would have been able to provide 
some concrete examples of one or the other supporting their views – the only 
example was the student who thought that vectors were unlikely to be used for 
anything in the future. This supports the above mentioned lack of ‘solidness’ of the 
students’ beliefs. 

FINAL REMARKS AND REFLECTIONS 

According to Lester, Jr. (2002, p. 352), Kath Hart at a PME conference once asked: 
“Do I know what I believe? Do I believe what I know?” Lester’s version of this 
question is: “Do students know what they believe?” Furinghetti and Pehkonen (2002) 
argue that one should take into consideration both the beliefs that students hold 
consciously as well as unconsciously. But how to do this? Lester, Jr. (2002, pp. 352-
353) sows doubt about some of the more usual methods for doing this: “I am simply 
not sure that core beliefs can be accessed via interviews [...] or written self-reports 
[...] because interview and self-report data are notoriously unreliable. Furthermore, I 
do not think most students really think much about what they believe about 
mathematics and as a result are not very aware of their beliefs.” Thus, the results 
above must perhaps be viewed in this light. However, other researchers (e.g. Presmeg 
2002) argue that questionnaires, interviews, etc. are perfectly well suited to access 
students beliefs about mathematics as long as the usual precautions, for example the 
interviewee trying to please the interviewer, are taken into account.  

In the research reported in this paper, the students knew nothing about my personal 
viewpoints on the evolution and development of mathematics; they were not familiar 
with the descriptions in the KOM-report, or the ‘identity’-description in the 
regulations for that matter. So it seems reasonable to say that none of these views 
could have affected the students’ answers. Of course, they knew that the interviewer 
was a mathematician which might have led them to alter some of their views. Also, it 
is true that many students do not have a clear and conscious idea about their beliefs 
about mathematics, as Lester says. When asking the interviewed students to deepen 
or expand their questionnaire answers some of them would have trouble remembering 
what they answered, some would be puzzled about their own answers, and some 
would take on different viewpoints in the interviews than what they had expressed in 
the questionnaire. Especially the question of invention versus discovery was one that 
seemed to puzzle the students; often they would have difficulty in making up their 
minds. From an educational perspective, this is, however, the power of this precise 
question: that there is no correct answer to it. It is a matter of conviction, whether you 
are a Platonist, a formalist, a constructivist, a realist, an empiricist, or something else. 
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Thus, students will have to reflect about the question on their own in order to take a 
standpoint. 

Especially reflection and the ability to perform reflection are considered to be major 
factors in changing beliefs (Cooney et al., 1998; Cooney, 1999). Thus, if the students 
who took part in the research presented above were to have their beliefs ‘molded’ or 
‘shaped’ in such a fashion that they would fit the previously presented goal-oriented 
descriptions, then one way of doing this would be to set a scene which enabled them 
to perform reflections. In fact, the students’ questionnaire and interviews reported 
above are an initial part of a larger research study, one purpose of which was to 
provide the students with classroom situations in which they were expected to work 
actively with and reflect upon issues related to, amongst other, the previously 
discussed aspects of the evolution and development of mathematics (questions 1 
through 7). More precisely, these situations consisted of two larger teaching modules 
which the upper secondary class was to engage in over a longer period of time.6 
During and after the period of implementation, the changes in students’ beliefs were 
attempted evaluated through more questionnaires and interviews but also by means of 
videos of classroom situations taking as the point of departure the ‘initial’ student 
beliefs as presented in this paper.7 A comparison of the questionnaire and interview 
results presented in this paper, i.e. those from before implementing the modules, with 
the later research findings, those from during and after the implementations, will be 
presented in Jankvist (2009). 

As a very final remark, I shall point to my own belief that reflections ought not only 
be considered as a means for changing existing beliefs, or creating new ones. A 
students’ image of mathematics should include an awareness of mathematics as a 
discipline that consists of and gives rise to questions to which there are no correct 
answers (e.g. that of invention versus discovery), and for this reason the ability to 
reflect is equally important. That is to say that not only is the act of providing 
students with an image of, or a set of beliefs about, mathematics as a discipline a goal 
in itself, the act of making the students capable of reflecting about their images is a 
goal as well. 

NOTES 

1. An exception is a Danish study of Christensen and Rasmussen (1980). 

2. A few examples are Schoenfeld, (1985) and Leder and Fortaxa, (2002). 

3. I shall not here enter the discussion of defining ‘beliefs’. I do, however, implicitly 
base my understanding of beliefs on the definition given by Philipp (2007). 

4. The full questionnaire consisted of 20 questions covering historical and 
developmental, epistemological and philosophical, sociological, and more personal 
affective matters of mathematics. Questions 1 to 7 are a variation of these.   
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5. The word ‘demonstrate’ in Danish has a dual meaning; it may be used both as the 
word ‘prove’ and as the word ‘display’. Thus, students may only need to display 
knowledge. 

6. Descriptions of and preliminary results from this research study may be found in 
Jankvist, (2008a) and Jankvist, (2008b). 

7. E.g. beliefs on question 5 were evaluated by posing more specific questions 
relating to the cases of the two modules. 
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USING HISTORY AS A MEANS FOR THE LEARNING OF 
MATHEMATICS WITHOUT LOSING SIGHT OF HISTORY: 

THE CASE OF DIFFERENTIAL EQUATIONS 

Tinne Hoff Kjeldsen 

IMFUFA, Department of Science, Systems and Models, Roskilde University.  

The paper discusses how and in what sense history and original sources can be used 

as a means for the learning of mathematics without distorting or trivializing history. 

It will be argued that this can be pursued by adopting a multiple-perspective 

approach to the history of the practice of mathematics within a competency based 

mathematics education. To provide some empirical evidence, a student project work 

on physics’ influence on the development of differential equations will be analysed 

for its potential learning outcomes with respect to developing students’ historical 

insights and mathematical competence.  

INTRODUCTION 

Fried (2001) argues that when history is used to teach mathematics the teacher must 

either (1) remain true to one’s commitment to modern mathematics and modern 
techniques and risk being Whiggish, […] or, at best, trivializing history, or (2) take a 
genuinely historical approach to the history of mathematics and risk spending time on 
things irrelevant to the mathematics one has to teach. (Fried, 2001, p. 398). 

Whig history refers to a reading of the past in which one tries to find the present.  

The purpose of the present paper is to argue that this dilemma can be resolved by 
adopting (1) a competency based view of mathematics education, and (2) a multiple-
perspective approach to the history of the practice of mathematics. Hereby, a 
genuinely historical approach to the history of mathematics can be taken, in which 
the study of original sources is also relevant to the mathematics one has to teach. To 
present some empirical evidence for this claim a student directed project work on the 
influence of physics on the development of differential equations will be analysed. 
The project belongs to a cohort of mathematics projects made over the past 30 years 
by students at Roskilde University, Denmark. Only one project is analysed in the 
present paper, but the reflections and discussions brought forward are based on 
knowledge about and experiences from supervising many of those projects. 

First, mathematical competence and the role of history in a competency based 
mathematics education are presented. Second, a multiple-perspective approach to a 
history of the practice of mathematics will be introduced. Third, the chosen project 
work will be analysed and discussed with respect to specific potentials for the 
learning of differential equations within the proposed methodology. Finally, the paper 
ends with some conclusions and critical remarks.  
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MATHEMATICAL COMPETENCE AND THE ROLE OF HISTORY 

In the Danish KOM-project (2000-2002) mathematics education is described in terms 
of mathematical competence. In this context mathematical competence means the 
ability to act appropriately in response to mathematical challenges of given situations 
and it can be spanned by eight main competencies (Niss, 2004). Half of them 
involves asking and answering questions in and with mathematics: (1) to master 
modes of mathematical thinking; to be able to formulate and solve problems in and 
with mathematics, i.e. (2) problem solving and (3) modelling competency, resp.; (4) to 
be able to reason mathematically. The other half concerns language and tools in 
mathematics: (5) to be able to handle different representations of mathematical 
entities; (6) to be able to handle symbols and formalism in mathematics; (7) to be able 
to communicate in, with, and about mathematics; (8) to be able to handle tools and 

aids of mathematics. In the discussion below, the possible learning outcomes of 
reading sources will be analysed with respect to these competencies. 

History of mathematics is not one of the main competencies, but is included in the 
KOM-project as one of three kinds of overview and judgement regarding 
mathematics as a discipline. The first concerns actual applications of mathematics in 
other areas, the second, historical development of mathematics in culture and 
societies, and the third, the nature of mathematics as a discipline (Niss, 2004).  

The KOM-understanding of the role of history in mathematics education has the 
honesty to history as an intrinsic part. In Danish secondary school this understanding 
of history is included in the curriculum (Jankvist, forthcoming). The objective of the 
present paper is to discuss in what sense such an understanding of history can be 
implemented in situations where the curriculum does not include history and does not 
assign time to teach history. Under such circumstances, history of mathematics is 
most likely going to play no role at all in the learning and teaching of mathematics 
unless it can also be used as a means to learn and teach subjects in the syllabus. 

A MULITPLE PERSPECTIVE APPROACH TO HISTORY OF MATH 

How can we understand and investigate mathematics as a historical product? One 
way is to think of mathematics as a human activity and of mathematical knowledge 
as created by mathematicians. This has been the foundation for many recent studies 
in the history of the practice of mathematics (Epple, 2000), (Kjeldsen et al., 2004).  

To study the history of the practice of mathematics involves asking why 
mathematicians situated in a certain society, and/or intellectual context at a particular 
time, decided to introduce specific definitions and concepts, to study the problems 
they did, in the way they did it. In this line of thinking, mathematics is viewed as a 
cultural and social phenomenon, despite its universal character. Studying the history 
of mathematics then also involves searching for explanations for historical processes 
of change, such as changes in our perception of mathematics, our understanding of 
mathematical notions, and our idea of what counts as a valid argument. 
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A way of answering such questions is to adopt a multiple perspective approach 
(Jensen, 2003) to history where episodes of mathematical activities are analysed from 
multiple points of observations (Kjeldsen, forthcoming). The perspectives can be of 
different kinds and the mathematics can be looked upon from different angles, such 
as sub-disciplines, techniques of proofs, applications, philosophical positions, other 
scientific disciplines, institutions, personal networks, beliefs, and so forth.  

How can this approach be brought into play to ensure the honesty to history, in a 
teaching situation where the teacher wants to use history as a means for students to 
learn a specific mathematical topic or concept? It can be implemented on a small 
scale, by having students read pieces of original mathematical texts focusing on 
perspectives that address research approaches or the nature and function of specific 
mathematical entities (problems, concepts, methods, arguments), in order to uncover, 
discuss, and reflect upon the differences between how these approaches and entities 
are presented in their text book and the former way of conceiving and using them. In 
such teaching settings, the students have to read the mathematical content of the 
original text as historians, using the “tools” of historians, and answering historians’ 
questions about the mathematics. For such tools, see e.g. (Kjeldsen, 2009). 

Through activities where students work with historical texts guided by historical 
questions, connections between the students’ historical experiences of the involved 
mathematics and their experiences from having been taught the text book’s version, 
can be created in the learning process. When students read historical texts from the 
perspectives of the nature and function of specific mathematical entities, they can be 
challenged to use other aspects of their mathematical conceptions in new situations. 
So, it is of didactical interest to analyse historical episodes of mathematical research 
with respect to their potential to challenge students’ mathematical conceptions. 

A HISTORY PROJECT: PHYSICS AND DIFFERENTIAL EQUATIONS 

In the following, the student directed project work will be analysed with respect to 
how and in what sense the students’ work with original sources provided potentials 
for the learning of differential equations – without losing sight of history.  

The educational context: problem oriented student directed project work 

The project report on physics influence on the development of differential equations 
was written by five students enrolled in the mathematics programme at Roskilde 
University (RUC). All programmes at RUC are organised such that in each semester 
the students spent half of their time working in groups on a problem oriented, student 
directed project supervised by a professor. The projects are not described by a 
traditional curriculum, but are constrained by a theme (Blomhøj & Kjeldsen, 2009).  

The requirement for this project was that the students should work with a problem 
that deals with the nature of mathematics and its “architecture” as a scientific subject 
such as its concepts, methods, theories, foundation etc., in such a way that the status 
of mathematics, its historical development, or its place in society gets illuminated. 
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Among the cohort of project reports, constrained by these objectives, this particular 
project was chosen, because the students happened to investigate differential 
equations, which are included in the core curriculum of advanced high school 
mathematics and mathematics and science studies in universities. Hence, the project 
work could be analyzed with respect to the issues addressed in the present paper. 

Analysis of the project work: learning outcomes and the competencies  

The students formulated the following problems for their project: 

How did physics influence the development of differential equations? Was it as problem 
generator? Did physics play a role in the formulation of the equations? Did physics play a 
role in the way the equations were solved? (Paraphrased from (Nielsen et. al., 2005, p.8)). 

On the one hand, these are fully legitimate research questions within history of 
mathematics. They address issues about an episode in the history of mathematics seen 
from the perspective of how another scientific discipline influenced mathematicians’ 
formulation of problems as well as the methods they used to solve the problems. On 
the other hand, these questions can only be answered by analysing the details of 
original sources that deal with this particular episode in the history of mathematics, 
studying how the differential equations were derived from the problems under 
investigation, how the equations were formulated, why they were formulated in that 
particular way, how they were solved and with which methods – issues which are 
also relevant for the learning and understanding of the subject of differential 
equations. Based on readings of three original sources from the 1690s, the students 
discussed these issues within the broader social and cultural context of the involved 
mathematicians, critically evaluating their own conclusions within the standards for 
research in history of mathematics. Hence, in this way of working with history in 
mathematics education history is neither Whiggish nor trivialized.   

I will discuss three instances where the students – qua the historical work – were 
forced into discussions in which they came to reflect on issues that enhanced their 
understanding of certain aspects of differential equations in particular and of 
mathematics in general. The discussion will end with a short presentation of some of 
the learning outcomes with regard to the eight main mathematical competencies. 

1: Johann’s differential equation of the catenary problem. The catenary problem 
is to describe the curve formed by a flexible chain hanging freely between two points. 
The students read the solution that Johann Bernoulli presented in his lectures on 
integral calculus to the Marquis de l’Hôpital, supported by English translations of 
extracts (Bos, 1975). Bernoulli formulated five hypotheses about the physical system 
that, as he claimed, follow easily from static. For the students, of which none studied 
physics, to derive these assumptions was the first mathematical challenge in reading 
Bernoulli’s text: “we had to derive most of them ourselves. We use 18 pages to 
explain what Johann Bernoulli stated on a single page” (Nielsen et. al., 2005, 19). 
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Below is one of the extract of Bernoulli’s text (Bos, 1975, 36) that the students read. 
As can be seen from the text, Bernoulli used the five hypotheses to describe the 
catenary and the infinitesimals dx and dy of the curve geometrically and derived an 
equation between the differentials. The figure was produced by the students and is 
similar to a figure in Bernoulli’s lecture, except from the sine-cosine circle. 

 

 

 

 

 

 

 

 

 

In their report, the students went through Bernoulli’s text and filled in all the 
arguments. They were not familiar with this way of setting up differential equations 
from scratch so to speak, so the mathematization of the physical system was a major 
challenge for which they needed to consult some textbooks on static and to combine 
the physics with mathematical results about triangles and the sine-cosine relations. 

Bernoulli’s arguments do not meet modern standards of rigour and that created 
cognitive hurdles for the students. Didactical, it is important to identify such hurdles 
because they create situations where the students, during their struggle with 
understanding the mathematical content of the original text, can be challenged to 
reflect upon the differences between our modern understanding and the one presented 
in the source, thereby enhancing their own understanding of the concept of, in this 
case, differential equations and the mathematical techniques and concepts 
underneath. A concrete example of this is Bernoulli’s use of the infinitesimal triangle. 
In the text above he used similar triangles, to argue that s:a = dx:dy but, as the 
students pointed out in their report, a does not lie on the tangent but on the catenary. 
Bernoulli also used the infinitesimal triangle later in the lecture, when he 

reformulated the differential equation derived above, using that 22 dydxds += . Again 
– as pointed out by the students – ds is a part of the catenary, not the hypotenuse of a 
right angled triangle. 

This mixed use of geometrical arguments and infinitesimals in deriving and 
reformulating the differential equation was very different from the students’ text book 
experiences of differential equations. The fact that Bernoulli’s method worked in this 
particular case, despite its lack of rigour, provoked a discussion among the students 
and their supervisor (the author) about Bernoulli’s use of the infinitesimal triangle 
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and his use of the infinitesimals, dx and dy, as actual infinitely small quantities. This 
made the students focus more systematically on the differences between now and 
then, questioning, at first, why we need to define a differential quotient as the limit 
(in case it exists) of difference quotients, then analysing the situation again to 
understand why Bernoulli’s method worked fine for the catenary,  and trying to 
picture situations where it would go wrong. This is an incidence where connections 
were created between the students’ historical experiences and their experiences from 
modern mathematics which challenged them to examine their own understanding of 
the involved concepts. Through these discussions, the students built up intuition 
about infinitesimals and awareness about the reasons behind the construction of our 
modern concepts. Major differences were the lack, in the seventeenth century, of the 
concept of a function, of a limit, and the formalised concept of continuity. In this 
project work the historical texts provided a framework for discussions among the 
students and with their supervising professor, about what constitute the concept of a 
differential equation, and how we can read meaning into it. Through these 
discussions, which were triggered by the historical texts, the students came to reflect 
upon the concept of a differential quotient and the meaning of a differential equation 
on a structural level that went beyond mere calculations and operational 
understanding of the concepts. This is an example of what Jahnke et. al (2000) calls a  
reorientation effect of studying original sources.  

2: Johann’s solution of the catenary differential equation. Through some further 
manipulations Bernoulli reached the following formulation of the equation for the 

catenary axxadxdy 2
2
+=  which he used to construct the curve geometrically. This 

puzzled the students and initiated discussions about, what it means to be a solution to 
a differential equation. 

 

 

 

 

As can be seen from the above extract (Bos, 1975, 41), Bernoulli interpreted the 
integral geometrically, as the area below a curve. The students added an illustration 
of this in their figure, as can be seen above, with the two shadowed areas which are 
not present in Bernoulli’s figure. This way of solving the equation by constructing the 
curve forced the students into discussions about conceptual aspects of solutions to 
differential equations. It made them articulate what constitute a solution in our 
modern understanding, an articulation that does not automatically manifest itself from 
solving differential equation exercises from modern textbooks. In order to follow 
Bernoulli’s construction, the students were challenged to think about and use 
integration differently than they would normally do when solving differential 
equations analytically. They were also forced to use the properties of the curve 
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represented geometrically which they felt as a challenge. They were used to using the 
direct relationship between the analytical expression of a function and the coordinate 
system, to produce a graph. Here they went “the other way” and had to think of the 
curve as being represented by its graph instead of its analytical expression. 
Historically, they realised that what is understood by a solution to a differential 
equation has changed in the course of time. 

3: Different solution methods of the brachistochrone problem. The brachisto-
chrone problem is to describe the curve of fastest descent between two points for a 
point only influenced by gravity. Jacob and Johann Bernoulli published different 
solution methods to the problem in 1697. Johann Bernoulli interpreted the point as a 
light particle moving from one point to another. By using Fermat’s principle of 
refraction, he derived an equation for the brachistochrone, i.e. the cycloid, involving 
the infinitesimals dx and dy. Jacob Bernoulli considered the problem as an extremum 
problem using that, since the brachistochrone gives the minimum in time, an 
infinitesimal change in the curve will not increase the time. 

The differences between Johann’s and Jacob’s solution of the brachistochrone 
illustrated for the students the power of mathematics. Johann’s solution was tied to 
the physical conditions of the problem and could not be generalised beyond the actual 
situation, whereas Jacob’s solution was independent of the physical situation and 
could be used on different kinds of extremum problems. Through the historical texts 
on the solution of the brachistochrone, the students experienced the characteristics of 
the nature of mathematics that makes it possible to generalise solution methods of 
particular problems. Thereby, they were able to understand why Jacob’s method 
could generate new kinds of questions that eventually led to a new research area in 
mathematics, the calculus of variations, and why Johann’s could not. For a 
presentation of the historical problem of the brachistochrone in a didactical 
perspective, see Chabert (1997).  

Development of mathematical competencies. In the discussions above of episodes 
where the students through their work with the original sources used other aspects of 
their mathematical conceptions in new situations and discussions, some learning 
potentials regarding differential equations and the mathematical concepts underneath 
have already been emphasised, especially in the discussion of the students’ work with 
Johann Bernoulli’s text on the catenary. A more systematic analysis of the students’ 
report with respect to the KOM-report showed that the students, in their work with 
the historical texts, were challenged within seven of the eight main competencies. 
The students’ awareness of the special nature of mathematical thinking (1) was 
especially enhanced in their comparison of Johann’s and Jakob’s solutions of the 
brachistochrone as discussed above. The students’ problem solving (2) skills were 
trained extensively and in different areas of mathematics. As mentioned in the 
discussion of their work with Johann’s solution of the catenary problem, the students’ 
had to fill in a lot of gaps in order to understand Johann’s results. Each of these gaps 
required that the students derived intermediate results on their own about similar 
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triangles using trigonometry, and solved mathematization problems. Through their 
work with understanding the Bernoulli brothers’ mathematization of the physical 
problems, parts of the students’ modelling competency (3) were developed. The 
competency to reason (4) in mathematics was developed in all those parts of the 
project work where the students tried to make sense of the original sources by means 
of their own mathematical training and knowledge. (5) Representations: As 
exemplified in the discussion of the students’ work with Bernoulli’s construction of 
the solution to the differential equation of the catenary, the students were challenged 
so work with a representation of the solution to the differential equation that is 
different from the analytical representation given in modern textbooks. In the report, 
the students also solved the differential equation analytically and compared the 
analytical representation with Bernoulli’s geometrical one. During their 
mathematization of the five hypotheses from static that Bernoulli took for granted, 
the students were trained both in working with different representations and in using 
the mathematical language of symbols and formalism (6). This competency was 
especially developed in the students’ work with the two original sources on the 
brachistochrone problem in their struggle to understand Johann’s mathematization of 
the path of the light particle and Jakob’s use of the minimising property of the 
brachistochrone. The writing of the report (90 pages) in which the students, through a 
thorough presentation and analysis of the original sources, answered their problems 
for their project work within the historical context, developed their competency to 
communicate (7) in, with, and about mathematics in ways that go far beyond what 
normal exercises in solving differential equations requires. The competency to handle 
tools and aids (8) was not represented.  

SOME CONCLUSIONS AND CRITICAL REMARKS 

Based on their studies of the original sources and relevant secondary literature, the 
students concluded that physics did function as problem generator in the early history 
of the development of differential equations and played a decisive role in the 
derivations of the equations describing the catenary and the brachistocrone. They 
further concluded that physics played a significant role for Johann’s solutions of both 
the catenary and the brachistochrone problem, but not for Jacob’s solution of the 
brachistochrone problem. Jacob’s arguments were not linked to the physical system; 
hence his method could be transferred to other problems of that type. This became the 
beginning of the calculus of variations. The students did not move beyond this in 
their project, but it is interesting to notice that the calculus of variation later became 
central in physics, providing an important feedback in the opposite direction. 

The analysis of the chosen project has shown that, if we adopt a competency based 
view of mathematics education and evaluate learning outcomes not with reference to 
standard procedures and lists of concepts and results, but with respect to how and 
which mathematical competencies, the students have been challenged to invoke, and 
thereby develop, and if we let the students work with the history of the practice of 
mathematics studied from specific perspective(s) that address(es) significant issues 
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regarding the mathematics in question, then history can be used as a means to teach 
and learn core curriculum subjects without losing sight of history. 

The above claims are further supported through analyses of other historically oriented 
mathematics projects that have been performed by students at RUC. A project on the 
history of mathematical biology, where the students read an original source of 
Nicholas Rashevsky on a mathematical model for cell division is treated in (Kjeldsen 
& Blomhøj, 2009) and analysed with respect to learning outcomes regarding deriving 
and understanding the general differential equation of diffusion, the students’ 
understanding of the integral concept, and development of the students’ modelling 
competency. Other examples of projects with substantial learning outcomes of core 
mathematics, in university mathematics education, are “Paradoxes in set theory and 
Zermelo’s III axiom”, “What mathematics and physics did for vector calculus”, 
“Generalisations in the theory of integration”, “Infinity and “integration” in 
Antiquity”, “Bolzano and Cauchy: a history of mathematics project”, “The real 
numbers: constructions in the 1870s”, and “D’Alembert and the fundamental theorem 
of algebra”. In the present paper focus has been on how history can be used for the 
learning of core curriculum mathematics without trivializing it or using a whiggish 
approach to history. The learning outcome of the above history projects can also be 
analysed with respect to Mathematical awareness, as explained by Tzanakis and 
Arcavi (2000), which includes aspects related to the intrinsic and the extrinsic nature 
of mathematical activity. These projects can then also be seen as empirical evidence 
for some of the possibilities history offers as referred to by Tzanakis and Arcavi 
(2000, 211). With respect to the KOM-report these aspects relate to the three kinds of 
overview and judgement.  

It can be raised as a critic that only certain perspectives of the history are considered, 
and that e.g. to gain insights into historical processes of change, episodes from 
different time periods need to be studied. In the above project work, the students did 
not experience the historical process of change, but they did experience that the 
understanding of the involved mathematics in the 17th century was different from our 
understanding. The students did not solve a huge amount of differential equations 
through their historical studies, and they did not learn to distinguish between different 
types of differential equations. 
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WHAT WORKS IN THE CLASSROOM - PROJECT ON THE 
HISTORY OF MATHEMATICS AND THE COLLABORATIVE 

TEACHING PRACTICE  

Lawrence Snezana 

The Langton Institute for Young Mathematicians and the British Society for the 
History of Mathematics 

This paper describes the project that was undertaken in the South East of England, 

and which aimed to introduce the history of mathematics at the primary and 

secondary level. The project was conducted through collaborative teaching practice 

(peer based network of teachers collaborating on research, planning, teaching in 

teams, and assessing the outcomes of lessons) and was based on the premise that the 

history of mathematics can improve both the motivation and attainment when used as 

a contextual background in the teaching of mathematics at this level.  

THE PROJECT BACKGROUND 

The project described here was one of the first few projects awarded the support by 
the National Centre for Excellence in the Teaching of Mathematics (founded in June 
2006). Aims of the project were to: 

• Introduce the history of mathematics into everyday teaching in order to  

o Encourage students to begin making the connections between 
mathematical topics 

o Increase interest and motivation by setting the problems in historical 
context 

o Enrich mathematical understanding through historical explorations 

o Assess the role of the history of mathematics in setting the new 
curriculum  

• Introduce collaborative teaching practice as a model of continuing professional 
development, at the same time adopting an inquiry-led learning approach to the 
lesson development thus raising issues about  

o Teachers learning with pupils (simultaneously in some cases) and the 
effects this may have on his or her professional role 

o Training preparation for teachers in an inquiry-led learning environment. 

The answers to these questions will be provided in this paper in two-fold ways: 
through the personal reflections of teachers who participated in the project, and 
through a synthesis and explanation of methods used throughout the project. The 
latter is provided as a way of suggesting the model of continuing professional 
development for teacher groups and networks wishing to introduce the historical 
element into the teaching of mathematics through collaborative practice.   
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The project began in September 2006 and was completed in September 2008 with a 
national conference held at the London Mathematical Society at which experiences of 
the teachers involved were disseminated among the mathematics education 
community. Over the course of the project three secondary schools, with a total of 
fifteen teachers (two of whom were science specialists but taught mathematics to 
lower ability groups), and three primary schools with a total of three teachers have 
been involved. More than 450 pupils have been involved in the project at various 
times, spanning the age range between ten and fourteen (English Key Stages 2 and 3) 
and covering all ability ranges.  

The project has been conceived and led by the author of this paper, and, as already 
mentioned, was supported by the National Centre for Excellence in the Teaching of 
Mathematics (UK). In the second year of the project the British Society for the 
History of Mathematics provided financial and organisational support; the University 
of Plymouth Centre for Innovation in Mathematics Teaching provided the training for 
all involved teachers in the principles of collaborative teaching practice, and the 
British Society for the History of Science provided extra funds for the final 
conference celebrating the project. An additional private consultant has been involved 
in the project in the second year, offering support in the matters of teacher training 
and the uses of the history of mathematics in development of mathematical pedagogy.  

The new curriculum for England and Wales 

The recent changes in the National Curriculum, and the new approach taken by 
the Qualifications and Curriculum Authority (QCA) introduced a certain amount 
of freedom for teachers, teacher teams, and consortia of schools to develop their 
own syllabus in all subjects. The modernising of the curriculum is driven by the 
need to take into account local needs and needs for different types of vocational 
training. One of the more positive aspects of this development may be seen in the 
fact that the local provision of education will have a degree of freedom (not yet 
defined), and that personalised learning, project based work and mentoring will 
all have a big role to play in this new vision of education. This opens a valuable 
opportunity for teachers to demonstrate that mathematics, like any other creative 
pursuit, is an area where exciting and useful contributions can still be made – 
both by teachers and by pupils. As such, the introduction of the historical 
element in the mathematics syllabus, although not sufficiently developed in the 
quote that follows, offers the possibility of developing teaching strategies which 
do not necessarily provide only historical context, but use the history of 
mathematics as a tool for discovering facts and exploring mathematical 
techniques. The new curriculum states that the students should recognise the 
‘rich historical and cultural roots of mathematics’: 

Mathematics has a rich and fascinating history and has been developed across the 
world to solve problems and for its own sake. Students should learn about problems 
from the past that led to the development of particular areas of mathematics, 
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appreciate that pure mathematical findings sometimes precede practical applications, 
and understand that mathematics continues to develop and evolve.1 

Since the completion of the project, and based on the recommendations following 
from the project report, measures are being taken by the Joint Mathematical 
Council (UK) to define the ways in which history of mathematics can and should 
be deployed to help shape the future development of the curriculum, and the 
teacher pre-, and in-service training development and provision. 

The current challenge now facing English teacher-training institutions will be to 
address the imbalance between the desire to introduce the historical element to 
the teaching of mathematics and a lack of the formal teaching in the subject area 
for the serving teachers. The project described can therefore, give a valuable 
insight into the types of issues facing teachers in this situation, with a view of 
defining some benchmarks on which it would be possible to base a programme of 
in-service training in the history of mathematics.2  

METHODOLOGY, ACTIVITIES, DATA 

Collaborative Teaching Practice and the History of Mathematics  

The project has been pursued by practicing teachers with various degrees of 
experience in the teaching of mathematics (not all of whom are subject 
specialists), and therefore the question arose of how to create a professional 
learning environment which would be able to contain all levels of experience and 
mathematical ability in order to support their participation. Of major interest was 
the possibility of introducing a model of continuing professional development 
based on a set of principles which could be replicated elsewhere and which would 
help teachers develop a range of techniques, and introduce a new element which 
could help them structure their own learning at the same time as structuring their 
teaching programme.  

We chose the model of collaborative teaching practice as one which would offer 
opportunities for teachers to develop their subject knowledge through research into 
the history of mathematics. Collaborative teaching practice was developed in 
different countries as far back as the 19th century (most prominently Japan, but 
recently also in the United States and England) and is sometimes also closely linked 
and/or referred to as ‘lesson study’.3 The collaborative teaching practice that was part 
of the described project as a way of peer-discussion and collective teaching tool was 
based on the simple cycle of planning - researching - sharing resources - teaching 
collaboratively - and finally assessing the outcomes of a lesson. 

At the core of this envisaged professional learning model stood a belief that the 
interest and personal development can only be achieved in those situations and 
environments where the professionals themselves find an area of research they 
would like to pursue further.  
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Various mathematics educators have seen the different roles the history of 
mathematics can take through its introduction into the education of mathematics 
teachers - Freudenthal (1981) for example conceived it as giving a background to 
the teachers’ mathematical knowledge, while others concentrated on offering a 
possible pathway to the deepening of teachers’ reflection capabilities through an 
in-depth study of the development of mathematical concepts through history (see 
Arcavi, Bruckheimer, & Ben-Zvi, 1982, 1987; Swetz, 1995). One of the 
approaches, developed by Hsieh and Hsieh (2000), and Philippou and Christou 
(1998a, b) dealt with using the history of mathematics as a particular tool and 
context to develop beliefs and attitudes in mathematics.  

The benefit of the use of history of mathematics however, in the context of the 
described project, can be best seen on the influence in which it created an opportunity 
for a focus of cooperation and collaboration as well as an impetus for the creation of 
a conceptual landscape which offered opportunities to teachers to develop their 
individual interests.  

This highly individualist approach to the continual professional development of 
teachers can increase their subject knowledge and enable them, through the 
modern technologies, to share their experiences and knowledge with mathematics 
teachers and students from around the world. Our agreed aim was to adopt a 
creative and individualistic ethos in teaching, providing ample opportunity for 
bringing the history of mathematics alive to the present generation of school 
children. Eventually, in practical terms, the defined foci were enlarged to include, 
apart from the collaborative teaching practice and the individual research, the 
creation of a networking platform in the form of web-quests4.  

The inquiry-led learning 

The inquiry-led learning is, on occasions, redeployed in contemporary practice 
with the individualised workshop-type of learning.5 The basis of the model the 
project team adopted rested on the modern interpretation of the heuristic method 
of teaching geometry; one in which pupils are encouraged to discover intuitively 
some geometrical truth without the resource to the available knowledge to begin 
with. At an appropriate time, the historical element is being introduced, showing 
pupils how others dealt with the same or similar problem, thereby  

• enhancing the learning process by making connections 
• increasing interest and motivation by setting the problem in context 
• enriching mathematical understanding through historical context.  

The project team was aware of the problems that inquiry-led teaching may 
contain should it be deployed without the full understanding of the possible 
drawbacks - unstructured or poorly structured learning environment, the 
difficulty of leading students to ‘discover‘ complex theories, and the difficulty 
some teachers may have in adjusting to such a learning environment. We 
however opted to explore this type of environment helped by the peer network 
and by the view that learning in a ‘mobile‘ world must change to incorporate not 



 

 

 

80 

only technology but the ideas of learning that the pupils/children already posses 
by the time they come to attend school.  

Inquiry-led learning also raises a number of questions for the preparation of 
lessons, teacher training, and finally, curriculum development - all aspects of the 
described project. Through the work conducted in the latter part of the project, 
during the winter/spring term of academic 2007/8, it was possible to make some 
conclusions regarding these questions.  

Teachers’ learning in an inquiry-led learning environment, and the 
collaborative teaching practice 

The inquiry-led learning as developed through this project grew organically from 
the collaboration with similary-minded colleagues. The successful outcomes were 
produced in those instances in which a few necessary prerequsites were fulfiled - 
existence of full professional trust and exchange of information and knowledge 
had to be devoid of all performance management in participating groups of 
teachers. The peer network, on the other hand, offered plenty of opportunities for 
exploring the areas of improvement instead. Critical friends were deemed to be 
colleagues working within smaller groups, and the involvement of the higher 
education (Plymouth) and national (NCETM) institutions added a dimension to 
this process through validation and provision of a postgraduate course.  

Collaborative teaching practice was described in the teacher reflections thus: 

The students appreciated the teachers cooperating between themselves and being 
more relaxed and focused on learning rather than discipline. 

It (this project) has certainly been a huge milestone in my professional development.  
Firstly, it has shown me the true value of collaborative teaching and the focus on the 
‘learning’ rather than the ‘teaching’.  Secondly, it has made me question why I am 
teaching what I am teaching, and how to help the children answer the ‘why’ do we 
do this questions by giving them relevance and meaning to the maths. My next 
milestone experience will be to embed this into my teaching and more crucially into 
the teaching of my colleagues.  

History of mathematics and the development of the curriculum  

In the description of the other aspects of this project it is described how the history of 
mathematics helped shape the building of the professional learning environment 
which then spilt over into the classroom. Historical dimension, apart from earlier 
mentioned benefits (see pages 1-4) was also important for teachers in terms of their 
involvement with the whole-school issues: 

The maths becomes ‘embedded’ in the culture and life and is not seen as something 
totally dry and devoid of meaning. This also changed the perception of mathematics 
in my department… (by a science teacher) 

There is a large scope in my school to bring about change in the mathematics 
curriculum and I am hoping to introduce an element of the History of Maths into the 
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curriculum.  ‘Using and Applying Mathematics’ is the common strand that is across 
the whole maths curriculum, and my experience on the project is that practical maths 
(in and out of the classroom) is a powerful medium by putting the children in the 
shoes of mathematicians from history so they can appreciate the ‘why’ and not just 
the ‘how’. 

OUTCOMES - STRUCTURING THE SELF-REGULATORY CONTINUING 
PROFESSIONAL DEVELOPMENT THROUGH COLLABORATION AND 
RESEARCH 

The project showed how the history of mathematics can set the ‘scene’ and act as 
a catalyst in creating a professional learning environment as well as giving a 
structure to endorse inquiry both in the student and in the teacher. In mathematics, 
this dimension is or can be, added to any such particular conceptual landscape. This 
should work with the teaching of any branch of elementary mathematics, but mostly 
so in the case of geometry. As the subject matter itself deals with understanding of 
space and properties of spatial elements, this in turn helps and underlines the 
development of competency in the building of a conceptual landscape of interrelated 
mathematical ideas. One may say that at the ontological level the building of the 
networks of concepts underlines the exploratory process of building the structure of 
learning mathematics, thus making the learning of geometry a truly multi-
dimensional knowledge manifold.  

The history of mathematics and the process of reorientation 

As Furinghetti has shown (2007) some teachers tend to believe that the style of 
mathematics teaching they were affected by or exposed to must be reproduced in 
their own practice. In the case of the described project, this was most evident in the 
attitudes of teachers who were non-specialists in the subject. Furinghetti showed that 
the history of mathematics context allows for an exploration of topics in a new light 
and hence helps teachers construction of teaching sequences. While this was one of 
the added benefits of introducing the history of mathematics into the collaborative 
practice, we were also aware of the uses of history of mathematics in teaching, 
therefore allowing us to explore the various roles the history of mathematics can take 
in the classroom practice.  

Whilst the history of mathematics in teacher education programmes has been 
described at some length by Furinghetti (2007), Schubring (Schubring et al., 2000), 
and Heiede (1996), little has been so far written about the in-service training of 
practicing teachers in this regard. This project aimed to begin the task by making a 
sketch of the possible influence the history of mathematics can have on in-service 
specialist and non-specialist mathematics teachers.  

Therefore one of the project’s aims became to try to introduce what Furinghetti 
(2007) calls ‘reorientation’: 

…the learners involved in the process … are forced to find their own path towards the 
appropriation of meaning of mathematical objects.6 
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In this context, the acquisition of meaning was attempted through exposing beliefs 
about, and the partial understanding of, the concept in question with the new, 
‘foreign’ meaning: 

A meaning only reveals its depth once it has encountered and come into contact with 
another, foreign meaning: they engage in a kind of dialogue, which surmounts the 
closedness and one-sidedness of these particular meanings.7  

This was found to be particularly effective in two instances:  

• the teachers’ understanding of mathematical concepts developed through 
the process of familiarisation towards meaningful context, followed by 
cognitive expansion, leading in turn to formal definitions, and thereby 
enabling specialist and non-specialist teachers to acquire: 

o greater competency in the subject matter 
o understanding beyond the basic comprehension of the type ‘this is 

how things work’ 
o development of interest to further deepen the knowledge and 

understanding of the mathematical concept and its relation to other 
concepts in the knowledge landscape. 

• teachers began structuring their understanding of concepts by developing 
an ability to switch between modes of thinking and behaviours 
attributable to learner vs teacher, therefore: 

o deepening their own understanding of the process of discovery and 
learning 

o refocusing from ‘how it works’ to ‘why’ as well as ‘how and why 
did they do it’.  

In short, one of the teacher testimonies illustrates these described process thus: 

… I was… astounded (by)… the depth there is in so many topics we have covered 
through this project. It has rekindled interest in mathematics in me; students find it 
interesting as well. 

Scaffolding knowledge for non-specialist mathematics teachers 

An increasing body of research shows that inquiry-based-learning helps create an 
environment in which the teacher may be required to act in manifold ways.8 
These manifold roles of a teacher relate to the theory of ‘Knowledge Manifolds’, 
in which teachers are ‘promoted’ from teacher/preacher to teacher/consultant and 
teacher/resource type of roles. Naeve (2005) defined the ‘Knowledge Manifolds’ 
as ‘linked information landscapes (contexts) where one can navigate, search for, 
annotate and present all kinds of electronically stored information’.9 Such open 
information landscapes have developed with an exponential speed since the 
founding of Wikipedia (domain launched only in January 2001), and rest on 
fundamental principles of communal and self-governance in the same way in 
which Naeve suggests future ‘teaching landscapes’ will develop. This theory is in 
concordance with the network theories of knowledge as much as it is with the 
theory of ‘mobile learning’. The described project opted to further explore in 
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practice such approach to teaching and learning in which teachers are as much 
learners as their pupils by making parallels between the sets of teachers with the 
sets of pupils. Some teacher reflections addressing this particular aspect are: 

This project has developed my skills to be able to find resources and to try to relate 
things to the history.  

Research was good for subject knowledge; because of the historical content, it 
widened our own perspective about mathematical topics, and gave us time to find 
about something in more depth.  

Historical element shows you the different aspects of something in more depth; it 
allows for ‘scaffolding’ of the knowledge and easier transference to children. The 
historical element can also offer easier focus. 

Furthermore, Naeve’s (2005) approach to knowledge which he identifies as that 
consisting of ‘efficient fantasies’ and learning as that consisting of ‘inspiring 
fantasies’ has a lot to offer in the context of creating a learning environment in which 
both teachers and students discover new facts and exchange ideas in a more 
elaborate, creative, and yet mathematically sound ways. Naeve’s description of 
fantasy has a lot to offer in terms of initiating a process of learning not only in the 
here and now, but one that draws upon the initial interest in the ‘fantasy’ and how it 
(the fantasy) occupies a mind of a learner for a longer period of time, offering a 
prolonged urge to find ever increasingly new content about a subject matter. Teachers 
from the project spoke often about these ‘fantasies’ as most important in the initial 
stages of introducing a new mathematical topic or concept. The length of this paper 
does not, unfortunately, allow for further analysis on the subject matter in more 
depth.  

What the conclusions teachers made however, agrees with Naeve’s suggestion that 
the education process consists in 

…exposing the learner to inspiring fantasies and assisting her/him in transforming 
them into efficient fantasies.10 

While Naeve somewhat exaggerated the view of the traditional ‘learning 
architectures’ being exclusively teacher-centric and consequently his concept of 
knowledge ‘pushing’ rather than knowledge ‘pulling’ may be lacking in subtlety, his 
intention to shift the focus onto the system of initiation into an interest field, whilst at 
the same time offering the system of skills to equip a learner with a set of tools to 
undertake the task of discovery and learning is at the centre of all: ‘collaborative’, 
‘flexible’, and ‘personalised’ learning concepts.11  

So far, as in the case of Mariotti (2000), the focus on developing strategies to initiate 
‘learning fantasies’ has been on the pupils. In the new type of learning environment, 
one in which ‘knowledge pulling’ rather than ‘knowledge pushing’ is taking place, 
teachers and pupils are learners and communicators of insights into mathematical 
facts at the same time, interchanging roles at different levels. From the experience of 
our project it became clear however, that some of the roles of the learner and some of 
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the roles of the teacher are interchangeable, whilst others remain strongly rooted in 
the  

a) evolutionary roles and  

b) social roles these two groups represent.  

Use of IT in developing CPD strategy in relation to the history of mathematics  

Much of the schooling is about learning to access parts of the cultural record and to 
manipulate them using the tools of external working memory such as writing and 
mathematical notation.12  

Two aspects of the use of IT were deemed a necessary part of the development of the 
project:  

1. using ICT to support the creation of narratives 
2. using ICT to support the exploratory aspect of the learning.  

To satisfy the former, a collection of web-quests13 is being developed - self contained 
websites for each of the lessons taught and studied as part of the project. These fulfil 
many roles, one of most important being the development of the base of knowledge 
in the history of mathematics which is multi-dimensional and usable not only for the 
purpose of one lesson but available for re-use and individual study by pupils.  

It is an undisputable fact that one of the most basic aims of all education is to instruct 
a learner into the sets of conventions. In the case of mathematics however, there is a 
danger that the convention may be confused with the invention - for example the fact 
that one (1) is not a prime number is often seen by a non-specialist teacher as a 
convention rather than a mathematical fact. The children too can have a difficulty in 
distinguishing the two important but entirely separate concepts, which can lead to the 
misinterpretation of all mathematics as a field consisting entirely of the various 
compilations of conventions. The historical narrative in this respect also offers a role 
in distinguishing the two. The process may be enriched by the narrative purposefully 
designed to satisfy the students’ need to encompass all natural phenomena in a self-
contained world of ideas thus also satisfying the mind’s ability to form a dialogue 
between “particular ‘episodic’ events and the general ‘theoretic’ models”.14  

This however, offers the greatest challenge to a working teacher - finding the time 
and reliable resources which they can use to enable them to: 

• construct such a narrative   
• construct the resources or create an environment to support the inquiry-led 

learning.  
Although in this respect the field of exploration widens considerably when the history 
of mathematic is offered as such one possible landscape, the necessity for the 
discovery and re-discovery of mathematical facts remains the question that needs to 
be addressed.  
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CONCLUSION 

Although no external evaluation had taken place to date, the internal, self-evaluation, 
concluded that this was an invaluable opportunity for all teachers involved in the 
project in terms of re-awakening their interest in the subject and increasing their self-
awareness on their abilities in terms of subject knowledge, pedagogy and ability to 
conduct academic research. Additionally, teachers identified acquisition of skills in 
terms of ability to envisage their own CPD landscapes through building ‘knowledge 
patches’ and increased ICT competencies as further valuable benefits of their 
involvement in the project.  

The nature of learning is a constantly changing environment, in which learners are 
often ahead in terms of their technological competencies than their teachers. The 
knowledge content does not move at such a great speed, but it’s presentation and 
availability is something that often lacks sophistication in the eyes of the learner. In 
mathematics this is sometimes more often apparent than in subjects such as literature 
or history.  

Mathematics learning has to gain an enormous amount from developing landscapes 
of knowledge patches that students can tap into through and because of their interests 
and abilities. This project began the process of enabling the teachers to be able to 
start developing these landscapes in collaborative environment, and having for a 
focus the wealth of resources that the history of mathematics has to offer.  
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1 Page 4 of the QCA Mathematics Curriculum, accessed 20th March 
2008,<<http://curriculum.qca.org.uk/subjects/mathematics/keystage3/index.aspx>>. 

2 As this paper was being completed, the new module in the history of mathematics was being 
developed at the Open University UK, aimed at anyone interested in the history of mathematics.  

3 See Lewis (1995), Lewis and Tsuchida (1998), Stigler and Hiebert (1999), and more recently 
Fullan (2004), (2005). 
4 Self-contained websites offering materials for the study of particular mathematical topics. First 
webquest from this project is available from http://www.webquests.mathsisgoodforyou.com/. 

5 The inquiry-led learning’s main proponents were John Dewey (1859-1952) and Martin 
Wagenschein (1896-1988). The main view they propagated was that the understanding must come 
before knowledge, and some of their ideas form the basis of the ‘constructivist’ idea of learning. 
The anti-proponents suggest that the data collected over the past half-century does not suggest that 
inquiry-based methods actually work. See Kirschner, Sweller, and Clark, (2006) for the latter view. 

6 Furinghetti (2007), 113. 

7 Bakhtin (1986), 7, as reported by Radford, Firinghetti, and Katz (2007), 108. 
8 Naeve describes these roles as that of “knowledge cartographer [who] constructs context maps, 
the knowledge librarian [who] fills the maps with content, the knowledge composer [who] 
combines the content into customised learning modules, the knowledge coach [who] cultivates 
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questions, the knowledge preacher [who] provides answers, the knowledge plumber [who] routes 
questions and the knowledge mentor [who] provides a role model and supports learner self-
reflection.” Described in Naeve (1997). 

9 Naeve (2005), 6. 
10 Naeve, (2005), 4. 

11 All part of the national strategies on ‘Every Child Matters’, ‘Personalised Learning’ and 
‘Extended Schools’. See related sections at the <<http.//www.standards.dfes.gov.uk>>. 
12 Donald (1991), 329. 

13 Web-quests are self-contained websites which can mutate over time, and incorporate all elements 
for the study of a topic from introductory remarks to worksheets, and the possibility of submitting 
work for assessment. For further information and a collection of examples see << 
http://webquest.org/>>. 

14 Shaffer & Kaput (1998), 101. 
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INTUITIVE GEOMETRY IN EARLY 1900S ITALIAN MIDDLE 
SCHOOL 

Marta Menghini 

Sapienza University of Rome 

A distinction between intuitive and rational geometry formally appeared in the Italian 

school program after the Italian unification of 1861. This distinction, that is not just 

an Italian issue, loosely corresponds to the points of view also adopted in the current 

geometry school programs both at a primary (6-10 and 11-14) and at a secondary 

(14-19) level. It is not difficult to define rational geometry: Although it has been 

approached with various methods, it is undeniable it arises from Euclid’s elements. 

On the contrary, it is more complex to give a definition of intuitive geometry and to 

understand in which way it leads to rational geometry. This paper will illustrate the 

interpretation given to intuitive geometry by the school programs and by the many 

authors of textbooks at the end of 1800s and beginning of 1900s in Italy. This 

analysis can help to discuss today’s curricular issues. 
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INTRODUCTION 

The term rational geometry first appears in the Italian school programs in 1867, few 
years before the complete Italian reunion, which occurred in 1871. A school 
reorganization brought in Euclid’s Elements as the geometry textbook aimed to teach 
the subject in the Gymnasium-Lycée.1  

In 1881, intuitive geometry comes to life to be taught in the first three years of the 
Gymnasium (the “lower Gymnasium” corresponding to the present middle school). 
Previously, geometry was not part of the school programs for students in this age. 

As we will see forward, intuitive geometry was explicitly introduced as a 
propaedeutic subject to let students better understand the rational geometry studies.  

It was not just an Italian issue to make a distinction between intuitive and rational 
geometry. Although with a different interpretation, references to intuitive geometry 
can be found also in the German and English literature of the same period (Fujita et 
al., 2004). In the textbooks of Treutlein (1911) and Godfrey & Siddons (1903), 
intuitive geometry -  still propaedeutic to rational geometry – is identified with the 
ability to perceive a shape in a space, partially aiming to provide the basic elements 
which explain the real world, and partially aiming to develop logic skills. 
Accordingly, Fujita et al. describe intuitive geometry as “the skill to ‘see’ geometrical 
shapes and solids, creating and manipulating them in the mind to solve problems in 
geometry”. This definition does not surely correspond to the characterization given 
by the Italian legislators at the end of the 18th century. 



 

 

 

90 

It is not difficult to give a definition for rational geometry. The term rational, 
opposite to intuitive, is meant to refer to any aspect of the logical and theoretical  
organization of the geometry (Marchi et al. 1996); although rational geometry can be 
approached in different ways, Euclid’s Elements always remain at the foundations of 
this subject. On the other hand, it is more complex to define intuitive geometry and to 
analyze the way it is linked to rational geometry. Many researchers in math’s 
education tackled this issue; a remarkable example is given by Van Hiele levels 
theory (cfr. Cannizzaro & Menghini, 2006). 

The lack of a formal definition and of a detailed tasks’ description of intuitive 
geometry caused continuous role changes in the Italian school programs. We believe 
it is important to discuss and analyze the reasons and the episodes which led to the 
introduction of intuitive geometry in the Italian school programs in the period 
between the 19th and the 20th centuries. 

SCHOOL PROGRAMS 

In 1881, elementary geometry and geometrical drawing were introduced in the first 

three years of the Gymnasium. An earlier intuitive experimental approach was 

considered a good help for students to overcome the difficulties caused by rational 

geometry and by the logical deduction of the Euclid’s textbook. Geometrical drawing 

too should contribute to overcome these difficulties. Intuitive geometry had to  

give to youngsters, with easy methods and, as far as possible, with practical proofs, the 
first and most important notions of geometry, …useful not only to access geometry, but 
also to let the students desire to learn, in a rational way, the subject throughout the Lycèe. 

Moreover, rational geometry is postponed to the Lycèe, skipping the two years of the 

higher Gymnasium, in order to avoid all the difficulties caused by its study. 

Three years later, the new minister, following a suggestion of the mathematician 

Beltrami, abolishes the study of intuitive geometry from the lower Gymnasium and 

anticipates rational geometry to the 4th year of the Gymnasium. This decision was a 

consequence of a lack of clear boundaries, and of the fear that teachers could not 

emphasize in the right way the experimental-intuitive nature of geometry being tied 

to the traditional logic-deductive aspect of rational geometry (Vita, 1986 p.15).     

In the following years, only few changes were introduced concerning the beginning 

of the study of rational geometry - which could be anticipated to the third year of the 

Gymnasium - and the learning approach to Euclid’s books. According to Vita (1986, 

p.16), “the oscillation reflects a clear didactic anxiety and the desire of finding the 

most psychologically adequate time to teach The Elements by Euclid, with all its 

logic-deductive layout, to the 13-15 years old pupils”. 

In 1900s a new program was broadcast: intuitive geometry was restored in lower 

Gymnasium, but, to prevent past problems, the program included only elementary 

notions such as the easiest geometrical shapes vocabulary, the rules to calculate 

lengths, areas and volumes and also basic geometrical drawing. Some instructions 
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specify that the new studies “were propaedeutic to rational geometry”. Moreover, 

they underline that these new studies are “a review and an expansion of the notions 

acquired by the students at the elementary school”, and require a practical approach, 

amplified by the teaching of geometrical drawing. As regards rational geometry, the 

new programs gave more freedom in the choice of the textbook, as long as it follows 

the “Euclidean method” (cfr. Maraschini & Menghini, 1992). 

INTUITIVE GEOMETRY TEXTBOOKS IN EARLY 1900S 

Since the program dated 1881 was effective for a very short period, we cannot find 
textbooks of intuitive geometry in those years. They appear right after 1900, instead. 
One of the first is the textbook by Giuseppe Veronese (1901). In Veronese’s book we 
can easily notice the effort made to follow the ministerial program2, considering the 
main properties of the geometrical shapes using the simple observation, rather than 
the intuition. Veronese wants to deal only with “those shapes that have an effective 
representation in the limited field of observation”. Initially, not even the straight line, 
the plane and the unlimited space are matter of his dissertation, given that they need 
an abstraction process. Furthermore, Veronese believes it is dangerous to introduce 
concepts that will need to be amended at some stage in the higher studies. 

In the Peliminary Notions, Veronese gives examples of objects (table, house..) and of 
their properties (colour, weight..). Material points (grains of sand) lead to the abstract 
concept of point, and material lines (a cotton thread) lead to the abstract concept of 
line, which is defined, both with practical examples (a pencil line) and as a linear set 

of points (an anticipation of what students will find in his textbook for the Lyceé). 

All the authors of intuitive geometry books of this period introduce the straight line 
using the idea of a stretched string, and explain later on the way it can be drawn using 
a ruler. Veronese ‘surrenders’ to the temptation of stating in a more abstract way the 
reflexive, symmetric and transitive properties of the equality relation for the 
segments. Afterwards, he explains that the congruence of the segments can be 
verified using a ruler or a compass. Here is an example on how the classical distance 
axiom is interpreted from an observative point of view: 

Assuming that the extension of the field of observation is appropriate, it is possible to 
verify that: On a straight line r, given a point A and a segment XY, two segments exist 
CA and AB having the same direction and length of XY. The axiom can be proved using 
a piece of paper marked with a segment of the same length of XY, and sliding it along the 
line r in the direction showed by the arrow   C ---> A ---> B       X       Y   (p.9). 

The textbook includes only one simple proof. After the definition of symmetric points 
about a given point O (central symmetry), Veronese states the following: 

The shape symmetric to a line about a given point is another line. 

Let ABC be a line and A’B’C’ the shape opposite to ABC about a point O. Using a 
compass, or copying the shape AOB on a piece of drawing paper and turning the paper 
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up side down so that OA corresponds to OA’ and OB to OB’, we can verify that the point 
C’ is on the line identified by B’ and A’... (p.13).  

Veronese, to avoid infinity, states that two lines are parallel when they are symmetric 
about a point, and explains how to manually verify that two lines are parallel (p.14). 
He lists elementary definitions for triangles, quadrilaterals, other polygons and for the 
circle without stating any property of these shapes. 

In all his book, Veronese includes simple drawing exercises, meant to be done by 
hand (to draw a dotted line, to duplicate a segment marking some corresponding 
points, to draw symmetric shapes using a specific point as centre of symmetry). He 
introduces only at the end of the book some geometrical constructions, “aiming to 
improve, with the practice, the intuitive perception of the geometrical shapes, whose 
structure will be later analyzed using logical proofs”. The chapter, describing 
geometrical constructions (of a triangle given three sides, of the bisector of an angle 
and other more complex constructions) which are not linked to the previous chapters, 
tacitly uses theorems never illustrated earlier in the book (especially those concerning 
the congruence of triangles). Some instructions precede this chapter, explaining how 
to execute a clear drawing and how to test the quality of rulers, squares, rubbers and 
pencils. Although Veronese made a good work keeping the manuscript simple, we 
have to note that no intuitive or rational effort is requested from the student. 

Frattini’s textbook (1901) has a structure which is similar to book by Veronese. He 
only gives less importance to the preliminary notions, more weight to the properties 
of polygons, and he also adds some minor practical proof. In the book’s introduction, 
Frattini underlines that a “geometrical truth” exists, and it comes from “an immediate 
observation of the things, which is the essence of the intuitive method”. In Frattini’s 
book, lines and planes are unlimited from the beginning and parallel lines 
characterization changes to the one that everyone knows (parallel lines never meet). 
Lets us see the characteristics of some of his proofs. 

There is exactly one perpendicular line through a given point to line on a plane (p.21). 
Let us bend a plane, imagine an immense piece of paper, and shape right angles so that 
one folding follows the line we want to draw the perpendicular to, and the other folding 
must include the point where the perpendicular passes through. Let us reopen the paper, it 
will be possible to see the trace of the perpendicular through the point and the line. 

To state that “the sum of the three angles of any triangle is equal to two right angles 
(p.29)”, Frattini uses the classic proof, based on the congruence of alternate angles. 
This congruence, anyway, is introduced without a proof (“the student can find a 
reason”). Veronese does not write about this property, not even about its 
consequences. 

The diagonals of a parallelogram mutually bisect (p.33). Suppose we cut out the 
parallelogram from a piece of paper, we would have, then, an empty space which could 
be filled either placing the parallelogram back in the same position or placing the angle 
A, marked with an arc, on top of the equivalent angle C, the side AD on the equivalent 
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side CB and the side AB on CD. In this way the diagonals of the shape, though upside 
down, would be in the previous position, the same for their crossing point. The two 
segments OC and OA would switch their positions: this means they are the same length. 

With regards of geometrical constructions, they are positioned, as well as in 
Veronese’s book, at the end of the book. However, Frattini tries, when it is possible, 
to explain them, using the properties of polygons. 

In 1907, a book by Pisati was published, slightly dissenting, in the preface, the 
programs’ structure and stating as follows: 

it seems proved that, in lower middle school, it would be a big mistake to leave the 
formal aspect of the subject completely apart. Pupils’ intellect, in the previous years of 
their life, has a formal nature….. Certainly, intuitive teaching of geometry is not easier 
than formal teaching; 

In fact, his book starts stating the concepts such as axiom, postulate, theorem, 
corollary and problem. In his textbook, we can find explicit theorems and proofs. In 
example, Pisati introduces the reflection about a line and proofs that: 

Theorem - All points on the axis of a segment, and no other points, are equidistant from 
the endpoints of the segment.  

Proof. The first part of the statement follows from the properties of the axis of symmetry. 
To proof the second part, we see that, when the point M does not belong to the axis of the 
segment PQ, one of the line segments MP, MQ must intersect the 
axis (see fig.). Let us suppose that MP is the segment intersecting 
the axis and N the point of intersection. Consequently, we have 
NP=NQ. Thus MP = NP + NM = NQ + NM. Since NQ + NM > 
MQ; we have MP > MQ. 

The proof of the theorem which states that the sum of any two sides of a triangle is 
always greater than the third one is justified by considering the line as the shortest 
distance between any two given points. This contested metric definition of the line, 
which was also used by Frattini, will never be used again in any geometry textbook 
for the secondary Italian school. The theorems proved by Pisati, allow him to explain 
all geometrical constructions stated at the end. 

The title “intuitive geometry”, which is not in Pisati’s book anymore, completely 
disappeared from middle school textbooks, and will only reappear with  Emma 
Castelnuovo’s book in 1948. 

FURTHER DEVELOPMENTS 

In 1905, the Minister Bianchi feels the need to remind to “escape from abstract 
statements and demonstrations” adding, on the other hand, to use “simple inductive 
reasoning” to teach the “truths required by the school programs”. In 1923, the reform 
made by Gentile turned the clock back. In the first three years of the Gymnasium, 
geometry studies “must only aim to keep alive all geometrical notions that the pupils 
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have learnt at the primary school and to properly fix in their memory the 
terminology”. Therefore, there are less requirements than in the provisions dated 
1900. Amongst the books published right after the reform Gentile, we have to 
mention Severi’s textbook (1928) which includes a preface by the Minister of Public 
Education. In spite of the good comments given in the preface, it is difficult to say 
that the book follows the school program guidelines. Over the years, middle school 
geometry had lost its experimental-intuitive nature, or even its terminological 
function, becoming more and more rational. Textbooks were almost independent 
from the school programs –which were in fact very brief and without any particular 
didactic connotation. The book by Severi is not surely an exception (although his 
book for higher school has always been appreciated for the experimental approach to 
theorems). It includes many theorems (also those regarding the angles at the centre 
and the angles at the circumference of a circle), with the most traditional proofs, 
except for using transformations (rotation and symmetry) as a support to the proofs 
and for avoiding the word “theorem”. 

In 1936 and 1937, a couple of reforms introduced only minor variations, which 
allowed some simple deductive analysis in the lower Gymnasium. 

In 1940, the first three-year of the Gymnasium, of the Technical school ad of Istituto 
Magistrale3 are unified to form the middle school. With reference to geometry, 
although its intuitive nature was confirmed, it was suggested to emphasize the evident 
properties “by means of several suitable examples and exercises, which, sometime, 
can also assume a demonstrative connotation…”. So, we can find a bigger change 
compared to the small ones introduced in 1936: the purpose is to start from an 
intuitive way of thinking to go towards a more abstract logic nature. 

An interesting book by Ugo Amaldi (1941) followed this reform. Amaldi completely 
stopped the process of “rationalization” of geometry. His textbook is similar to 
Frattini’s book, but it contains some new important changes: measurements and 
geometrical constructions are not illustrated in separate chapters but they are 
integrated with the other parts of the book, providing a useful didactic tool. We find 
many figures and references to real life (i.e. an opening door gives the idea of infinite 
planes all passing through the same straight line, paper bands illustrate congruent 
segments…), which were completely disappeared in the meantime. So, given the 
instructions to draw the axis of symmetry of a segment using a ruler and a compass, 
Amaldi suggests to check the construction folding the paper and verifying that the 
circumferences, used for the construction, overlap. To know the sum of the angles of 
a triangle, he suggests to cut the corners of a triangle drawn on paper, to place them 
one next to the other and to check that they form an angle on a line. Similarly, he 
suggests cutting and folding techniques to verify the properties of quadrilaterals. 

At the end of the world war in 1945, a Committee, named by the Allied Countries, 
deliberated some programs which were later adopted by the Italian Minister. The 
middle school program reverted to practical and experimental methods, but the 
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methodological guidelines for the higher Gymnasium are particularly interesting: it is 
suggested to leave more space to intuitive skills, to common sense, to the 
psychological and historical origin of theories, to physical reality, ... to use 
spontaneous dynamic definitions which better fit the intuitive method. 

Vita observes that “unfortunately these suggestions appear to be disjointed from the 
school programs that do not show any peculiar innovation”. An innovation is, indeed, 
represented by the book of intuitive geometry by Emma Castelnuovo (1948). In her 
book, E. Castelnuovo follows in Amaldi’s footsteps, using drawings, pictures, cross 
references to reality and integration of constructions and measurements. In addition 
to this, her book, for the very first time, interacts with the student, not only to let him 
follow a logic deduction or a proof but also she also raises questions in his mind. 

What is the meaning – you would question – of the statement that there is only one line 
passing through two distinct points A, B? How can the contrary be possible? It is true: it 
is not possible to imagine two o more distinct lines passing through A and B. It is 
possible, however, to draw with a compass several circles passing through two points…  

The book starts with paper folding, and goes on with ruler and square constructions. 
As Amaldi does, she reuses the idea of the stretched string to introduce the properties 
of segments and straight lines; a method already used by Clairaut, who was 
Castelnuovo’s inspiration. Simple tools are made-up, as a folding meter to show how 
to transform a quadrilateral into a different one, and to analyze the limit situations. 

CONCLUSIONS  

Our analysis clearly shows the difficulty to find an equilibrium between the notions 
that a pupil is supposed two learn, and the notions which he can accept by means of a 
non rigorous argumentation. It could seem that geometrical constructions were a real 
nuisance for early 1900s authors, due to their hidden theoretical content. Around the 
twenties, the problem seemed to be overcome by amplifying the rational aspect of 
geometry. It was only in the forties that the books of Amaldi and Emma Castelnuovo 
succeeded in the attempt to integrate constructions in the intuitive geometry 
textbooks, reducing their number and their technical aspect. We have to admit that 
most authors, starting from Veronese and Frattini, as Amaldi and Castelnuovo, 
perceived the need to reduce the dissertation: books are concise, authors are not eager 
to complete all topics, on the contrary, everybody tends to prefer a specific aspect of 
the subject. 

Anyhow, the very aspect that seems to be relevant for approaching geometry in a real 
intuitive way is the active learning role of the student. Programs tried, several times, 
to deny this role, and it has been interpreted in different ways by authors. Emma 
Castelnuovo foresees and opens the door to the use of concrete materials. 
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1 Secondary education was divided into a first and a second level. To cover classical secondary 
education, a law of 1859 had introduced the Gymnasium and the Lycée - The Technical School and 
the Technical Institute were set up for technical secondary education. 

The Gymnasium and the Technical School were preceded by four years of primary school. The 
Technical School thus covered the same age range as the present-day middle school (11–14) while 
the Gymnasium lasted for five years and hence included the first two years of high school followed 
by three years of Lycée. 
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2 Index: preliminary notions; line; plane; equal shapes; plane polygons; circle; perpendicular lines and planes; 

polyhedra; cone – cylinder – sphere; sum, difference and measure of segments and angles; measure of segments and 

angles; surface areas, volumes; exercises. Drawing tools; basic constructions; Line, plane and unlimited space. 

3 Training school for primary school teachers. 
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THE HISTORICAL AND COGNITIVE DEVELOPMENT OF 
CALCULUS IDEAS 
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SUMMARY 

This contribution is a theoretical research about possible parallelism between the 

historical development and the cognitive development of mathematical ideas. 

Epistemological obstacles identified in the history may be considered as candidates to 

be obstacles in the analysis of teaching and learning process. Thus, an important 

question is whether the kind of epistemological history obstacles are the same found 

during the learning at school. In that sense, the application of genetic method in 

teaching, presupposes that, for the understanding of a particular concept, the student 

has to repeat roughly the historical process that has evolved to the current formulation 

of the concept. 

 

Key words. The genetic method - cognitive development - historical development - 
epistemological obstacles -  epistemological breaks 

INTRODUCTION  

The use of epistemology helps us to maintain a vision of extrinsic objects taught, 
returning a historical vision to these objects, as opposed to the traditional teaching that 
tends to present them as universal objects. It is customary at the university, teachers 
address the teaching of science and mathematics in particular, usually based on finished 
facts, in which student does not get the notion of debate or controversy. It is also 
common to consider the construction of scientific knowledge as merely cumulative. In 
that sense, the historical reconstructions can provide students an understanding about the 
changing nature of science. While the development of mathematical concepts in the 
classroom can not be parallel, in general, to the historical development, it is conceivable, 
in a transposition didactic process, to go on the "stages" of the historical process. 

Authors increasingly emphasize the need for teachers to value the importance of offering 
a vision of mathematics through the historical aspects that have influenced the 
construction of knowledge. In this sense, Garcia Cruz (1998) introduces the 
bachelardiano model (Bachelard, 1938), which is based on the idea of scientific change, 
within which there are three well-defined categories in the context of epistemology: 

epistemological barriers: They are ingrained ways of thinking, old structures, both 
conceptual and methodological, impeding the progress of scientific knowledge. 
(Brousseau 1976, in Artigue, 1992: 197). It is accepted that the new knowledge is based, 
to some extent, in a process of rejection, contradicting the education model that sees 
learning in a linear way, adding new knowledge to the former. The presence of breaks in 
learning is normal. To learn ways of definitive knowledge, it´s necessary to go back, and 
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progress in learning requires some sort of rejection of what has temporarily been an 
engine of progress. 

epistemological breaks: In general terms, they are the ways in which scientific 
knowledge contradicts the ideas or beliefs that come from foremost primary 
knowledege, intuitive and common sense. The break that occurs between two different 
scientific concepts, both for a given knowledge to a specific methodology, it’s also 
considered an epistemological break. Any break involves overcoming the corresponding 
barrier. 

Epistemological acts: They are the mechanisms by which epistemological obstacles are 
overcome and breaks with the old concepts are favored, causing corresponding changes 
and improving the scientific vision about reality. Within these mechanisms the use of the 
history of science plays a vital role, especially when attempting a reconstruction of the 
processes that has conditioned the progress of scientific knowledge. 

EPISTEMOLOGICAL OBSTACLES IN INTEGRAL CALCULUS 
TEACHING 

The context  

The introduction of the last 80 years reform has been very slow in America, and in 
Argentina in particular. On the one hand, formalism and theoretically still dominate the 
curriculum of calculation, and on the other hand, the new literature has a glaring lack of 
structuring. In this aspect, Michele Artigue (2000), referring to this problem in France, 
believes that the difficulties are clearly noticeable when reading most recent textbooks, 
where the status of objects, and the notions of assertions, are vague and unclear. These 
views characterize also our literature. The formal definitions have been rejected, 
replaced by expressions more or less accurate in a more common language, the theorems 
are accepted based on some explorations and they are not always mentioned as they 
could be. In terms of Artigue, it gives the impression that consistency induced by logical 
coercion of mathematical knowledge has disappeared, without another way to replace 
the solid consistency. 

One of the didactic phenomena which is considered essential in the teaching of 
Mathematical Analysis, is the “algebrización”, that is: the algebraic treatment of 
differential and integral calculation. 

Artigue (in Contreras, 2000) expresses this fact in terms of an algebraic and reductionist 
approach to the Calculus, which is based on the algebraic operations with limits, 
differential and integral calculus, but it treats in a simplistic way the thinking and the 
specific techniques of analysis, such as the idea of instantaneous rate of change, or the 
study of the results of these reasons of change. 

Contreras (2000) explains that when a teacher explains a particular mathematical 
concept and does not address, or does so on a superficial level, the typical problems of 
analysis, sliding into algorithmic postures easier to manage and evaluate, produces a 
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genuine break of contract teaching, called by Brousseau “Topaze effect"(Brousseau, 
1986). 

Regarding the concept of integrate, we find it appropriate to make some considerations 
about the misconceptions in the students: 

A) very often, students identify integrate with primitive. For these students, it’s not 

involved any convergence process nor any geometric aspect in the calculation of the 

integral. It is therefore a purely algebraic process, so that astudents can learn different 

methods of integration, and even apply them to calculate, with some fluency, and at the 

same time, not being able to solve the calculation of an area or to study it as a Riemann 

sum. 

 B) Students identify definite integrals with the rule of Barrow, even where it’s no proper 
to apply it. Such it’s the case of essential discontinuity functions in the range considered.  

C) A third problem stems from the lack of association between the definite integral and 
the analysis of convergence. 

D) It’s not integrated the concept of area with the concept of definite integrate. It is 
likely that students have noticed that there is a relationship between both, the definite 
integrals and the area, but teachers don’t work with their students on these issues, so 
that, it remains a purely algebraic interpretation of the integral. Students use the formal-
algebraic context instead of visual-geometric one, simply, because they haven’t 
integrated them. (Llorens and Santonja, 1997).  

It is clear that the epistemological obstacles identified in the history must be considered 
as candidates to be obstacles in the analysis of teaching / learning process. To be 
considered genuine epistemological barriers of education, it is necessary to test its 
resistance to teaching appropriate interventions. Thus, an important question is whether 
the kind of epistemological history obstacles are the same found during the learning at 
school or university. In that sense, the approach in terms of epistemological obstacles is 
usually associated with a search in the history of mathematics, in search of significant 
and fundamental problems and to an organization of the teaching process 
epistemologically more appropriate than the usual.  
As part of an epistemological-historical analysis, we believe it is important to promote 
the construction of comprehensive knowledge about the techniques used to study their 
convergence, applications such as area between curves and volumes; both, for, as against 
the prior algebraic knowledge of students, which justifies the use of counterexamples 
that show the fallacies of over generalization, so breaks and necessary reconstructions 
may be promoted. 

Obstacles related to the existence of the area and volume 

One obstacle that appears most often in the calculation of improper integrals, called 
"ligación a la compacidad " (Schneider, 1991), which associates a finite area with closed 
delimited figures. This obstacle seems to be compounded by the lack of coordination 
between the graphic, algebraic and numerical records, besides the lack of examples and 
counterexamples in the field of numerical series. In the case of integrals of functions as 
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1/x and 1/x2, some students tend to consider them as the area and volume of a single 
function. When working in R2, they have difficulty in differentiating both integral areas 
under different curves. This is an obstacle linked to the lack of coordination between 
records,  and non flexibility in coordination. In that sense, we consider it´s important to 
offer students activities which combine different representations. Such is the case with 
the sequence of graphics which represents 1/x and 1/x2 in different intervals: [1,10], 
[1,1000] and son on, so that students can distinguish the two curves and guess about 
convergence, as it´s shown in the first and second graphs. The last one is particularly 
interesting, from a better approximation, considered in the interval [700,1000], giving 
best guesses about convergence (Figure 1). 

 

 

 

 

 

Figure 1. The function 1/x is in blue and 1/x2 is in purple. 

In addition, the association with the number record allows to corroborate the 
assumptions about the convergence of each of the curves. The values in Table 1 are:  

{x, dt
t

x

!
1

1
} from x = 1 with increments of 50 units, and the graph represents the area 

under the curve for each value of the area in the table (Figure 2). The combination 
between both, numeric and graphic records, allow us to infer that the integral doen´t 
converge. 
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Table 1 

Figure 2 

In the case of 1/x2, the values are:  
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1
}, taken with the same frequency (Table 2)  and the area under the curve for 

each value of the area in the table (Figure 3). In this case, the combination between both, 
numeric and graphic records, allow us to infer that the integral converge. A subsequent 
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algebraic analysis and widespread property for 1/xn can lead to get more general 
conclusions about the behavior of the hyperbolic functions. 

 

{{1.,0.},{51.,0.980392},{101.,0.99

0099},{151.,0.993377},{201.,0.9950

25},{251.,0.996016},{301.,0.996678

},{351.,0.997151},{401.,0.997506},

{451.,0.997783},{501.,0.998004},{5

51.,0.998185},{601.,0.998336},{651

.,0.998464},{701.,0.998573},{751.,

0.998668},{801.,0.998752},{851.,0.

998825},{901.,0.99889},{951.,0.998

948},{1001.,0.999901}} 

Table 2 

Figure 3 

In the same sense, the obstacle of "homogenize dimensions" (Schneider, et. al, 1991) 
which consists of attributing a volume the properties of the area that generates it, as a 
solid of revolution, is compounded, among other factors, by the absence of coordination 
between records. Most of the university literature intends to consider a volume as an 
overlay surface. Or, through the study of the first two dimensions is possible to find the 
third, or a volume is an area multiplied by a height. (De Burgo, 2007; Larson, 2006; 
Stewart, 2007; Zill, 2008). 

The most common conceptualization is (Stewart, 2006): 

Definition of a solid volume  

Consider a solid S which lies between x=a and x = = b. If the area of cross-section S at 
the plane Px (perpendicular to x-axis), which passes through x and it´s perpendicular to 
the x-axis, is A(x), where A is a continuous function, then the volume of S is 
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Thus, the volume conceived as consisting of different plates, with the assumption that 
the area of the "generating" blade (when it comes to a volume of revolution) is infinite, 
the usual conclusion is that the volume will also. Artigue (1995) describes this obstacle 
is associated with the implicit and uncontrolled jumps between domain of objects and 
geometric figures when simultaneously magnitudes of different sizes are handled 
(consequently the union of magnitudes necessarily correspond to adding measures).  

One consequence of this reasoning, is that equal perimeters hold equal areas and equal 
areas generate equal volumes. An interesting counterexample is to propose the 
calculation of the area between x and x2, on the one hand around the x-axis (y = 0), and, 
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on the other hand around y= 2. A proper analysis, through the geometric representation 
of the problem, allows to understand that the areas match but the volumes are different.  

Therefore, as there are figures of infinite perimeter with infinite area, students usually 
assume that all the figures of infinite perimeter must enclose an area infinite. Schneider 
(Et. al, 1991) relates, also, this obstacle with the problems caused by the use of the 
infinite now: if students conceive the volume as an added of flat sections, they will 
attribute the result of volume, as the limit of added areas and the properties of their 
elements, the sections, will be transferred to the volume generated.  

In this context, students, in first year of university, address the Integral Calculus from the 
Riemann sum, in which the area is no longer defined as a geometric object, but as the 
result of a calculation in accordance with a procedure given, where limit and summation 
take place. No one takes into account the difficulty of linking the area with the process 
that allows to add infinite amounts infinitely small. Often, from the logical point of view, 
this reasoning lacks of being able to give a precise meaning to the concept of infinitely 
small amount. Associated with the foregoing, appears the difficulty of the three 
magnitudes that are present when we define the Riemann sum: rectangles, segments of 
which are reduced and the curvilinear area to be determined. The approach, through 
upper and lower amounts, for example, of rectangles, is built on an existence theorem 
that ensures that these amounts exist without ever to justify the student, nor his 
existence, nor their convergence (Tall, 1992). 

THE HISTORY OF MATHEMATICS TEACHING AS A DIDACTIC 
RESOURCE. THE GENETIC METHOD 

Introduction 

For many reasons, it´s not easy to identify ways to implement The History of 
Mathematics in education, as it depends, among many other factors, the educational 
level, the subjects and specific problems, historical knowledge of professor, his interest 
in interdisciplinary work, his prediposing and ability to perform the transposition 
didactic, adaptation, reconstruction, recreation and transformation of institutionalized 
historical knowledge (as useful knowledge) in learning to teach within the historical 
resources pre-selected as viable in classroom, and, moreover, without falling into 
anachronistic exhibitions that distor the past in an attempt to describe and interpret it 
with existing instruments of our notation, language and mathematical terms (Gonzalez, 
1992). 

Miguel de Guzman (1992) argues that the creative immersion into the difficulties of the 
past feeds the possibility of extrapolation towards the future. In that sense, Kline (1992) 
agrees, on the one hand, that the historical perspective gives a more panoramic view of 
mathematical problems in order to gauge more accurately the importance of various 
items, which are better articulated within a general context; and on the other, that history 
can give global perspective on this topic and relate the subjects, not only with each other 
but also with the central lines of mathematical thinking. In addition, the study of history 
allows knowing the emergence of epistemological difficulties that present a great 
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similarity with those of students, and therefore facilitates the identification of 
epistemological obstacles in learning. 

There is a repertoire of important issues and problems that can be specially treated 
following its historical evolution, including the problem of tangents to curves, and the 
problem of squaring the curve, where you can go back to Archimedes, whose 
mechanical method points towards the indivisible, while his exhausción method 
foreshadows the limits of aritmetización Analysis (Gonzalez, 1993). In both problems, 
tangents and quadratures, there is a slow transition from centuries of mathematical 
creativity, a suite of brilliant mathematicians are shaping infinitesimal methods and 
techniques of an enormous heuristic and intuitive value, which call into question the 
rigor, and bind to ask transcendent epistemological questions about the relationship 
between invention-discovery processes and presentation-demonstration.  

In the view of authors like Gonzalez (et. al, 1992) and Guzman (et. al, 1992) the most 
direct way to implement the History of Mathematics at the Teaching, is to test on some 
particular subjects, through the application of genetic method, which tries to rebuild the 
psychological atmosphere that envelops every creator moment who has represented a 
quantum leap in the history of mathematics. 

The term genetic appears for the first time in Appendix sixth of the book Foundations of 
Geometry (Hilbert, 1996), where the famous mathematician gives to it a high and 
heuristic educational value and counterpose to the axiomatic method. The application of 
genetic method in teaching, presupposes that, for the understanding of a particular 
concept, the student has to repeat roughly the historical process that has evolved to the 
current formulation of the concept. Poincaré (1963) describes his philosophy of cultural 
genetics and F. Klein (1927) developes a genetic argument in his text aimed to the 
formation of the teaching elementary mathematics candidates from a higher viewpoint. 
O. Toeplitz, one of the creators of genetic method, which applies in his book The 
Calculus, a genetic aproach, says : ” ... The genetic method is the surest guide to this 

gentle rise [in the study of Calculus], which otherwise is not easy to find. Follow the 

ongoing genetic is the path that has followed the men in their understanding of 

mathematics, and you will see that humanity has been rising gradually from the simplest 

to the most complex. Important developments occasional can usually be taken as an 

indicator of before methodical progress. The teaching methods can benefit greatly from 

the study of history "(Toeplitz, 2007: 26). 

In his argument against the deductive interpretation, Kline (1978: 48) is based on the 
historical evidence and agrees unconditionally to genetic method: "Each person must 

spend roughly the same experiences for which their ancestors passed if he wants to 

reach the level of thought that many generations have achieved. [...]. One can not doubt 

that the difficulties which the great mathematicians found are also the obstacles faced by 

the students…”. 

In our opinion, not only the difficulties are the same but students must overcome 
approximately the same manner as mathematicians throughout history did, gradually 
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becoming familiar with new problems, starting by an intuitive level, that is gradually 
incorporating methods, techniques, ideas and concepts. Clearly, this repetition of the 
historical process should not be understood at face value. In the construction of Science, 
often tortuous way, roads that are sometimes reversed, are walked, so that the current 
educational development of science can not be linear. Without hiding the student the 
gradually winding of scientific creation, we must guidethem in the learning process. The 
application of genetic method in the teaching-learning team performs a reconstruction of 
history that allows to find the key questions that generate ideas and to meet the needs 
that led to the introduction of a new concept in a particular historic moment, as well as 
the inherent difficulties related to the delivery of some ideas and the solving of some 
problems, difficulties, which, as noted Kline (et. al, 1978), are manifested, also, in 
learning the same concepts and in solving the same problems. 

Possible parallelism between the historical development of calculus and the 
cognitive development of mathematical ideas 

The story allows us to understand the difficulties of our students in understanding the 
concepts of limits, continuity, derivative and integral. Here the historical period of 
difficulties is very broad, covering virtually since the birth of the rational Mathematics 
until the end of the nineteenth century, that is to say: from attempts to hide the infinity 
process in mathematics, conducted by the Greeks, by Archimedes and the exhaución 
method, up to the reformulation of the new rigorous analysis, undertaken in the 
nineteenth century by Cauchy, Weierstrass, and other mathematicians like Dedekind; 
going, as intermediate steps, by the reflections of the medieval Scholastica on the infinite 
and continuous, which led to the emergence, during the seventeenth century, of 
infinitesimal methods, which consolidated and generalized by Newton and Leibniz, led 
to the discovery of infinitesimal calculus.  

The obstacle of the “ligación a la compacidad” in students, has its parallel in the 
calculation of integrals in infinite intervals. The problem was dealt in sigloXVII, when 
the approach had a more geometric character. The first to address the improper integral, 
explicitly, was Grégoire de Saint-Vincent, who got his results before Fermat. His 
motivation was purely to investigate, find and generalize results. He pretended to 
calculate the volume generated by the rotation of an infinite area, results showed by 
Guldin, in a surreptitious way, and formalises Tacquet, a disciple of Saint Vincent. 
(Boyer, 1949). 

 It is worth noting that in all known cases of the seventeenth century, the interest lied on 
the potential functions (integrates of the form ! dxx

n ), except when considering the 

logarithm function (introduced in the geometric scene in the work of Saint Vincent and 
Beaune) (Boyer et. Al, 1949). This is where we might find interesting questions about 
convergence. 

As for the problem of “homogeneización de dimensiones” (homogenization of 
dimensions), it is possible to draw a parallel with the work of Cavalieri, mainly his 
Geometria indivisibilibus, written and printed in stages between 1620 and 1635, where 
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reflections on the generation of geometric shapes are exhibited. There, the cylinder is 
generated by a parallelogram and the cone by a triangle, while the surface area of the 
cylinder is double that of the cone, and the volume is three times. Cavalieri regarded a 
plane figure as composed of all its lines and a solid as composed by an undetermined 
number of parallel planes fragments. To avoid adding indivisible, he, instead, 
determined proportions or relationships. Here, we can see another possible parallelism 
between the historical development and the cognitive development of mathematical 
ideas.  

This analysis tends to prove that the perception of surfaces (respectively, volumes) as 
stacking segments (respectively, surfaces) similar to that developed by Cavalieri and 
others mathematicians in the seventeenth century, although it´s not taught explicitly, it´s 
present in the mental representations and informal mathematical literacy of students of 
today. Schneider explains that this fact can explain some frequent and persistent errors in 
calculating areas and volumes, as well as some difficulties in understanding the modern 
process of integration. (Artigue et. al, 1995). 

CONCLUSIONS  

A theory of cognitive development of mathematical thought in the individual, from 
elementary beginnings through to formal abstractions, requires a cognitive 
understanding of the formal abstractions themselves. 

On the other hand, the relationships between various different representations of a 
concept, including verbal, procedural, symbolic, numeric and graphic, is necessary to 
understand it. Empirical evidence traditionally suggests that it is necessary to become 
familiar with a process before encapsulating it as an object. The computer, used as a 
didactic tool, is capable of carrying out routine processes, such as drawing graphs, 
solving numerical tables, which now give the possibility of new learning strategies in 

which the objects produced by the computer are the focus of attention before the internal 
algorithms are studied. 

In taking students through the transition to advanced mathematical thinking we should 
realize that the formalizing and systematizing of the mathematics is the final stage of 
mathematical thinking, not the total activity. Accordingly to Skemp (), some researchers 
and teachers try to present mathematics as a logical development. This approach is 
laudable in that it aims to show that mathematics is sensible and not arbitrary, but it is 
mistaken in two ways: 

First it confuses the logical and the psychological approaches. The main purpose of a 
logical approach is to convince doubters; that of a psychological one is to bring about 
understanding.  

Second, it gives only the end-product of mathematical discovery (‘this is it, all you have 
to do is learn it’), and fails to bring about in the learner those processes by which 
mathematical discoveries were made. It teaches mathematical thought, not mathematical 
thinking. 
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In like manner, at the advanced level, teaching definitions and theorems only in a logical 
development teaches the product of advanced mathematical thought, not the process of 
advanced mathematical thinking. 
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The subject of this text is the appropriation of the New Math on the Technical 

Federal School of Parana in 1960’s and 1970’s. From a historical perspective, 

founded by Certeau (1982), Chartier (1990) and Julia (2001), the study composed its 

sources from scholar documents, located on ETFPR files. The study concludes that 

the ETFPR did not prioritized in its Course Plans, the teaching of the New Math. In 

this period, the scholar culture of ETFPR was marked by teacher initiatives directed 

to the elaboration of didactic material suited to the technical courses which were, in 

that moment, engaged in approaching the scholar mathematics to the technical 

culture, transforming it in a useful tool for the urgent need of forming the necessary 

work force to the industrial and technological development of the country. 

Since 1960, the international New Math Movement (NMM) has penetrated in several 
countries schools, seeking to introduce a new language into the scholar Mathematics 
as well as trying to adjust it to the new challenges brought by the scientific and 
technological development that emerged in this period. 

In Brazil, the movement has increased its force through actions of countless math     
teachers, like the ones triggered by the Group of Study of Mathematics Teaching 
(GEEM). The GEEM was created in São Paulo – Brazil and coordinated by teacher 
Osvaldo Sangiorgi, one of the most enthusiasts members of the NMM in Brazil.  

In Brazilian educational context, the technical industrial teaching had a fundamental 
role in society economic projects, essentially in 1960 and 1970 decades. At that time, 
the increasing of education levels, especially for poor people, had the main objective 
of preparing the taskforce for industries, as well as absorbing imported technologies 
from rich countries. The Federal Technical School of Paraná (ETFPR) [1] carry out a 
main role, at that moment, of forming taskforce to technologic and industrial 
development in Paraná State.  

Considering the importance of local studies for understanding the national history of 
the NMM, recognized as a major reformation applied to Scholar Mathematics in a 
World level basis, the present study aims to understand how the New Math was 
appropriated by the ETFPR, in 1960 and 1970 decades. According to Valente (2008, 
p.665): 

The NMM constitutes a fundamental reference to the Mathematics Education as a 
Research Field. The associated historical moment had triggered the 
organization and the systematization of scientific activities related to the 
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teaching and learning of Mathematics. In other words: The NMM made the 
emerging of the Mathematics Education Research Field. 

Oriented by a cultural and historical perspective, the study uses as sources the 
theoretical-methodological approaches of Certeau (1982), which conceives history as 
an “operation” that requires for its writing, as a practice activity, of a scientific 
approach. Besides, Certeau uses the concept of “Appropriation”, from Chartier 
(1990), with the objective to understand the use that scholar agents have made of the 
New Math, disseminated by the Movement in a scholar culture (Julia, 2001). The 
study arise questions about changes occurred in the Mathematics discipline offered 
by the ETFPR, in the NMM discussion period.  

The study sources were based in files archived in the Nucleous of Historical 
Documents (NUDHI) and the General Files of Federal Technological University of 
Paraná State (UTFPR), in Brazil. In those files, some documents were consulted, 
such as: Professors Council Proceedings, Class Diaries, Courses Plans, Curricular 
Grades, Math Books and normative documents.  

To confront the date related to the NMM reception, in the scholar practices of the 
investigated institution, some interviews were conducted with three teachers and an 
ex-student, which were witness of the teaching, and learning process that took place 
at ETFPR in 1960 and 1970 decades. 

THE PROFESSIONAL TEACHING IN BRAZIL 

Professional teaching, in Brazil, has begun in the Imperial time when the first 
nucleous of professional formation were founded, in Jesuitical colleges and 
residences. They were called “factory-schools of artisans and other professions” 
(Manfredi, 2002, p.68). In that period, the most part of manual and manufacturing 
jobs were done by Slaves. In first Republic, when Brazil was entering a new stage in 
terms of economical and social development, the professional schools gained a new 
role, becoming truly technical schools networks. The teaching system of those 
schools then takes the objective of teaching popular conditions in great Cities. This 
type of schools, at that time, were directed essentially to poor people, and considered 
by that fact as a second category school. There was also a great problem of scholar 
evasion. The most part of the professions that were offered were manual or artisan 
originated, like joiner, shoemaking and tailor’s workshop.  

After the 1930 revolution, with the large scale industrial development model adopted 
by the president Getúlio Vargas, that superseded the agro-exportation model, the 
factory-schools of artisans and other professions, which were initially the 
responsibility of agriculture ministry, became part  of the new created Education and 
Health ministry.  

In the New State Period, the professional education has the same role of the previous 
period, which was directed to the poor classes. On the other hand, the secondary 
course was directed to elite classes. This duality was strongly discussed in the 
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“Pioneers Manifest”, in 1932, which makes the proposal of the organization of 
academic and professional courses in the same institution as well as the adaptation of 
schools to regional interests. In spite of that, only in 1942 the pioneers concerns were 
accepted by Gustavo Capanema Minister, who’s Organic Laws, among other things, 
rebuild the Industrial Teaching. According to Cunha (1977, p.55), one of the main 
factors of the new organization was the Second World War economical context. 
According to the author, the countries that were involved with the war drastically 
decreased the exportation of manufactured products to Brazil. One great change 
proposed by the Organic Laws was the definition of the Industrial Teaching as a 
secondary course, destined to professional preparation of workers to the industry. 
With that, the industrial courses students could enter superior courses related to the 
corresponding professional course. 

In the same period, complementary legislation in professional teaching, the edict-law 
4.048 of 22nd of January, 1942, created a professional teaching system which was 
“parallel” to the official system, sustained by enterprises. This new system, 
nominated National Service of Industrial Learning (SENAI), was supported by the 
Industrial Confederation and had the finality of organizing and administrating the 
Industrial Learning Schools of SENAI all over the country. The motivation being the 
creation of SENAI was that, due to the extinction of the “factory-schools of artisans 
and other professions”, the old tasks of those schools then became an obligation of 
the Industries. So, professional enterprises assumed the task of preparing their own 
taskforce through SENAI and became, gradually, the inspiring model to the technical 
education for Brazil in later years.  

Organized in two cycles (gymnasium and collegial), the first, brought by the 
Industrial Schools and second, by the Technical Schools, and systematized through 
the Organic Laws, technical education remained as a branch of education leading to 
the formation of professional demanded by the production system, therefore, a 
terminal branch of education. In the 1950’s, through the 1821 Act, the forming 
students from technical, industrial, commercial and agricultural secondary courses 
were able to access university courses, provided if they submit to the demands of 
college entrance examination. 

At the end of 1950, with the new National order “education for development”, 
occurred, during the administration of Juscelino Kubitschek, the reform of Industrial 
Education. With the Law 3552/59, federal technical schools have been given own 
legal personality, introducing administrative, educational, technical and financial 
autonomy and leaving them to constitute a uniform system, with organization and 
similar courses. 

According to Cunha (1977, p.81), despite the autonomy given to technical schools, 
the control was taken by the Ministry of Education. This control was even increased 
by the Direction of Industrial Education (DEI) fixing the minimum required 
curriculum for technicians certificates in specific areas. Among other functions, DEI 
was responsible for development of curriculum guidelines, the evaluation system, 
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examinations and promotions, besides the development of teaching materials, courses 
plans and school performance indicators. 

At that time of growth and improvement of the Brazilian industrial chain, the spirit of 
the technique has been widely sown in industrial schools throughout the country. The 
work of the technical, according to Cunha (1977, p. 30), "begins to depend more on 
their knowledge than their manual skill or ability of direction" 

With the Law of Guidelines and Bases of Education (LDB), which restructured the 
education in three Degrees: primary, middle and high, technical education began to 
be offered in three ways: industrial, agricultural and commercial. It was only with this 
Law that in fact the entry to high education was consolidated for students of 
professional education. 

From 1960, more and more young people were seeking high education as a mean of 
social ascension, as the economic model of concentration, income left no other 
alternatives. According to Cunha (1977), in that decade, the social-economic profile 
of students in technical courses was changing. The number of technicians enrolled in 
high education during the period between 1962-1966 (about 33%), showed that 
students of the technical industrial courses hoped that the function of the courses 
were propaedeutic, an instrument of social ascent. 

THE MATHEMATICS DISCIPLINE IN ETFPR, AT NMM PERIOD 

According to the Information Bulletin of the Brazilian-American Commission of 
Industrial Education (CBAI, 1960e, p. 4) [2], the qualified professional is: 

 [...] the professional who knows the technology, the practice and still has sufficient basis 
for progressing into the professional field [...] needs of the concepts of 
general education as math, drawing, as well as extensive knowledge of 
technology related to their profession for the development of new 
techniques and improving of his work. 

Considering Mathematics as a basic discipline for the technique culture of students, 
the biggest challenge that was presented to the teachers of technical courses was to 
contextualize the content, from problems of practical applications in technological 
world. 

According Clemente (1948, p. 86): 

[...] it is usual to say that mathematics teaches reason and, in industrial education, this 
proposition assumes a broader character. It's the Math that plays the most 
important role in the mental training of specialists. Therefore, follows that 
the teacher of mathematics has, perhaps, the most important part in the sum 
of knowledge that will form the expert Professional. 

In this article, Arlindo Clemente proposes that the teacher of mathematics workshop 
must bring the factory into the classroom and seek to solve real problems of the job, 
replacing abstract mathematical problems by concrete ones. 



 

 

 

113 

The mathematical reasoning is the element that will transform the older worker, 
empirically formed, in the modern workman much more capable, with a 
greater intellectual capacity. And, no doubt, this parcel of culture is one that 
will give the worker the possibility of connecting his brain to his hands. 
This is the function of mathematics in the education industry. (Clemente, 
1948, p. 87) 

The main concern of Clemente was the practical application of mathematical 
concepts to technical disciplines of industrial education and the choice of essential 
and minimum contents, necessary for the training of technicians. 

The article by Martignoni (1951, p.695), "The Mathematics in Practice and 
Education," published in the Bulletin of CBAI, in July 1951, also highlights the 
importance of mathematics to bring the workshops and cut the superfluous. His 
speech is full of pragmatism, questioned the need to study the contents that are not 
directly related to the practical application. Admit that the science math is the reason 
for scientific progress, but more elaborate math that should be left for further studies 
because it will not meet the purposes of technical courses under the guidance of 
CBAI, the Math should have a strong character practical and utility. Meanwhile, the 
Federal Technical School of Parana, already in the late 50, faced major problems with 
teachers of the Industrial Technical Education, focusing on the quality of courses. 
Then Director of Technical School of Curitiba, Dr. Lauro Wilhelm, indicated as early 
as 1959, two major factors for the low quality of technical courses: the poor training 
of teachers of general education and technical culture and lack of control over the 
teacher’ activities. 

In the late of 1950, the discussion on the mathematics in industrial technical courses 
had national repercussions. In III Brazilian Congress of Mathematics Education 
(Ministério da Educação e Cultura, 1959), held in Rio de Janeiro in 1959, coordinated 
by the Campaign for Improvement of Secondary Education and Broadcasting 
(CADES), the Industrial Education, whose committee was directed by Arlindo 
Clemente who presented for discussion, a Program dedicated to the teaching of 
mathematics in technical courses, highlighting the math in the workshops and the 
correlation of  mathematics disciplines culture technique (Ministério da Educação e 
Cultura, 1959, p. 28). 

NEW MATH TRACES OF ETFPR 

The modernization of Mathematics was associated with betting on technical progress. 
For Valente (2006, p. 39), “the Math was valued as part of a scientific training that 
would have continuity in Higher Education and to do so was needed rapprochement 
between the approaches of mathematics in Higher Education and in secondary, in 
conceptual terms, methodological and language”. This approach to the mathematics 
of Higher Education expressed on the main features in NMM: The accuracy, 
precision of language, deductive method, and generally higher level of abstraction, 
use of contemporary vocabulary, thought axiomatic among others. 
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However, even taking the Technical School teachers participated in the preparation of 
textbooks of New Math of the group's Center for Research and Dissemination in 
Mathematics Teaching (NEDEM) in the Parana State College (CEP), these actions do 
not seem to result in upgrade programs of Mathematics. So they show the "Daily 
Class" (document 6) [3] the years of 1967 and 1972, teachers of the ETFPR Industrial 
Gymnasium, which do not show any trace of New Math. 

In oral testimony, the teacher E1 [4] reported that the books of mathematics, used in 
industrial Gymnasium, at end of the 1960’s, were Marcondes (1969). The collection 
was divided into three volumes: algebra, arithmetic and geometry. Referring to the 
edition of 1969, found the lack of content of New Math. 

It is important to remember that some Mathematics teachers, employed by ETFPR in 
the second half of 1960’s, were still students in the Course of Mathematics at the 
Federal University of Parana (UFPR), and had no authority to his colleagues to 
propose changes in programs and in the textbooks adopted. Much of these new 
teachers were in contact with the new contents of Modern Mathematics, run programs 
developed by teachers responsible by the subject, since their independence was 
conditioned by teachers who were at school for a long time, a school culture specific 
for technical school. 

Also, at the beginning of 1970’s, new teachers of Mathematics were minority. This is 
confirmed by the testimony of a former student from Industrial Gymnasium: They 
had some new teachers, but a proportion of 70% were the most experienced teachers 
(E3). 

The teacher E1, in testimony to the researcher, reported that the first time  he heard 
Theory of Sets was in 1967, when his teacher asked him the option to work on this 
topic. In 1970, when he graduated in Mathematics, by UFPR, began working in the 
State Network for Teaching and ETFPR, teaching Mathematics belonging to the 
gymnasium course. According E1, the network state of education first adopted the 
Mathematics book of NEDEM and then Oswaldo Sangiorgi´s book. He said he came 
to work a full year in the State Network with Theory of Sets. Already in ETFPR were 
taught some notions of collections, but that was not exagerated (E1). 

In 1966, theacher Ricardo took over the direction of ETFPR. The entry of this new 
director would give new direction to the organization of teaching-learning school. He 
took in baggage, more than to the experience of CBAI, the coexistence with the 
Americans and the commitment with the institution and students. The strong 
American influence received by the new director would be largely responsible for the 
ideas of method, rationality, profficiency that would come with greater intensity, 
being part of school culture of ETFPR. In his testimony, Professor Ricardo Luis 
Knesebeck reported that first, as coordinator of instruction, and then director, 
implanted, demanded, draconian by the  program of education for all teachers, it was 
an something absurd to teach and don’t commit with anything. 
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The document "Content to be determined" (document 11) [6], prepared by teachers of 
mathematics and approved by the Coordination Didactic, in 1969, showed that the 
program was based on the sequence of the contents in the collection, books in 
Quintella (1966), which until 1970 did not have any trace of New Math, and Theory 
of Sets, relations, matrices, etc. Odds specified in the "Pilot Program" (document 12) 
[7] published by GEEM, in the year 1968. 

In oral testimony E1 the teacher said that teachers closely follow the book, the first to 
the last page and the Head of the Department selected by the exercises in the book 
that the teacher should do. In his opinion, this hand method works very well. In the 
Mathematics Program in 1st years (document 11), we found a topic: "General Review 
of the 1st cycle of matter." This may be an indication of the teachers concern to 
maintain a certain quality of education that could be harmed, because of the low 
quality in Mathematics taught in the gymnasium. 

In the analysis of the goals of textbooks delivered to students, called "Auroras", 
observed that in the year 1973, compared with the program in 1969, the complex 
numbers and trigonometric equations were removed, and simplified the study of 
vectors and orthogonal views. We also note that a greater emphasis was given to the 
trigonometric functions. 

In the “Auroras” program  in 1975 some contents were evaluated: 

I - SET - Goal 1: Operating with sets. 1.1 - Determine the union of sets. 1.2 - Determine 
the intersection of sets. 1.3 - Determining the difference between two sets . 
1.4 - Determine the complement of a set. 1.5 - Correctly use the symbols of 
the theory of sets. II - NUMBERS (NUMERICAL SETS BASIC) - Goal 2 - 
Understand the fundamental numerical sets (...). III - RELATIONS AND 
FUNCTIONS. Goal 3 - Represent graphically relationship and function. 
(...)3.3 - Determine the Cartesian product between two sets. (...) 

This portion of the manual for evaluation of the student confirms the evidence E1 on 
the introduction of theory of sets for the students of secondary technical course and 
the new approach to the concept of function according to modern mathematics. the 
notion of variation and functional dependence of the functions was virtually forgotten 
over the NMM that adopts the design of structural function of Bourbaki. 

In the year 1975, the term "field of existence" has been replaced by "dominion" and 
"image" of trigonometric functions, the term used in the book Iezzi et al. (1973) [8]. 
Making a comparison between the "Pilot Program" (document 12), prepared by 
GEEM in 1968, for the first two years of secondary education, noted that the 
ETFPR's program, although more extensive, included topics such as the 
trigonometric functions and resolution of triangles, suggested by the group of São 
Paulo.  

In 1975, an ETFPR is a complete revision of the programs of Algebra (Math I). With 
adoption book Iezzi´s et al., (1980), the topics turn to a deal with sets, sets numerical 
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key, full study of the functions of the 1st and 2nd grade, depending Exponential, 
logarithmic function, the study inequalities of 1st and 2nd grades, exponential and 
logarithmic. The subjects are addressed in accordance with the "Pilot Program" 
(document 12) suggested by GEEM in 1968. 

Iezzi's book presented the contents of duty by a graphical approach. Separating each 
chapter, there was an example of mathematics application in today's world. There 
was a concern with the formal mathematics, but not so exaggerated. Indicated at the 
end of the book, had several references about the Modern Mathematics. 

We can noticed that probably  the book's Iezzi et al, (1980) deals with the theory of 
sets to meet a market need, as a warning Kline (1976, p.135) "Other texts begins with 
a chapter on the theory of sets, It was then back to the traditional math and would 
henceforth no longer refer to the theory of sets or any other topic in modern 
mathematics". 

The book's Gelson Iezzi et al have consolidated a discussion of teachers  curriculum 
modernization, already presents among the  Mathematics of ETFPR. In his testimony, 
teacher E1 said that he and his colleagues in the early of 1970 began to define 
functions as a particular case of the relationship between two sets (a structural design 
adopted by the NMM) rather than as a functional dependence as was discussed of 
Ary Quintella´s book. According E2, a teacher of ETFPR the 1960’s, the technical 
course did not give much emphasis to the theory of sets, it was an education more 
focused on practice. One possible explanation for the slow integration of the Modern 
Mathematics in ETFPR could be one of the goals for Educational System in the 
ETFPR "(document 4) [9] as defined in 1972:" Cut programs of study fictitions 
topics". Would be "fictitious subject", the content broadcast by the NMM? Would be 
inappropriate to technical education? 

In the first half of 1970’s, despite the strong tendency to follow faithfully the 
textbook, some mathematics’ teachers of ETFPR started developing their own 
material to work with students, such as "Geometry of Space Material" (document 15) 
[10]. 

The exercises in these first worksheets have not any relation with the technical 
matters because there was a culture of integration between these areas. According to 
the interviewee, the teaching of mathematics was not aimed at career academies: No, 
it was generic. At the time, from 1969 until 1974, it didn’t have a very great 
integration between the teachers of general education and culture specific; they 
worked half apart (E3). 

In 1970’s, with the support and encouragement of the Department Mathematics 
Coordinator, the production of teaching material itself was improved and marked in a 
more intensive way the culture of ETFPR. This initiative was not alone, it was 
occurring in several federal technical schools in Brazil. In ETFPR, this initiative was 
consolidated in 1980’s and resulted in a collection mathematics books  directed to the 
Technical Education. 
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FINAL CONSIDERATIONS 

The study indicates, some aspects emphasized by NMM, as the theory of sets, the 
axiomatization, the new mathematical language, laden with symbolism, seemed 
incompatible with the needs of the students training who wanted a technical school in 
the 1960’s and 1970’s. 

Concerned to offer a "practical education", required by technical training, an ETFPR 
not prioritized the teaching of modern mathematics in their courses, at the top of the 
movement. The testimonies show that there was an insertion of non-official "some" 
ideas of NMM and this can be evidenced by the few traces of Modern Math, 
documents found in the school. 

The study shows that only from 1970, some contents of New Math were introduced 
in the course of school, and that means textbook from 1980, Mathematics teachers 
ETFPR started of the preparation of a Mathematics textbook colletion, putting an old 
idea to feature a "practice" to discipline by proposing a specific methodology able to 
articulate the rationale, graphic interpretations, problems applying physics problems 
and technical subjects. The weak presence of New Math  in ETFPR, far from setting 
itself as a resistance from teachers, to the ideals of the movement, indicates that in 
decades in question, a ETFPR wanted to amalgamate a difference in their school 
culture, slowly making a "creative consumption" of textbooks, strong responsible for 
the insertion of New Math  in Brazilian schools. 

NOTES 

1. Today is called Federal Technological University of Parana (UTFPR). Use the name Federal Technical School of 

Parana (ETFPR), like this named because most of the period defined in the study, namely the 1960’s and 1970’s.  

2. Bulletin of CBAI. Brazilian-American Commission of Industrial Education. Educational program of cooperation 

maintained by the governments of Brazil and the United States Research and Training of Teachers. Vol. XIV, n.5, 

1960e, 16p. 

3. Document 6: Diaries of the course  belonging class of 1967 and 1972. - Archive of General UTFPR. 1967 to 1972.  

4. The name of the interviewees E1, E2 and E3 was not revealed at their request. 

5. KNESEBECK, Ricardo Luis ex-student, ex-teacher of physics, ex-director of the Federal Technical School of 

Parana. (Interview granted to Gilson Leandro San Mateo - NUDHI / UTFPR. Curitiba, 16/17 May 1995). 

6. Document 11: Content to be established in 1969, 1969, 17p. 

7. Document 12: Pilot Program for the school course prepared by GEEM in 1968. Sao Paulo: GEEM, 1968, 5p.  

8. The first edition of this book is the year of 1973. In this study found was the eighth edition, published in 1980.  

9. Document 4: The educational system of the Federal Technical School of Parana produced by the Education 

Department through the coordination of the Didactic ETFPR.  

10. Document 15: Geometry of Space Materialmade by teachers of ETFPR. Library of UTFPR, s / date. 
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HISTORY, HERITAGE, AND THE UK MATHEMATICS 
CLASSROOM 

Leo Rogers, Oxford University 

Since 1989 the UK mathematics curriculum has been dominated by a culture of 

testing ‘core skills’. From September 2008, a new curriculum places the history of 

mathematics as one of its “Key Concepts’ which is now a statutory right1 for all 

pupils. While the curriculum has changed, there has been virtually no relevant 

training for teachers, and while the testing regime remains in place, there seems little 

chance that pupils will obtain their entitlement. This paper examines the problem of 

teachers’ scant knowledge of history of mathematics and proposes a new approach to 

introducing relevant materials together with a pedagogy which capitalises on recent 

research, to introduce the heritage of mathematics into our curriculum. 

THE NEW ENGLISH CURRICULUM 

The first chapter of Fauvel and van Maanen (2000) considered the political context of 

the history of mathematics in school curricula. At that time, the UK curriculum
2
 was 

undergoing radical changes, which produced a curriculum based on ‘core skills’ with 

modularised
3
 lessons that enshrined traditional beliefs about ‘levels’ of knowledge 

that produced a ‘topic-based’ curriculum as a collection of disparate activities rarely 

connected in any sensible way. Textbook design followed the syllabus, and past test 

papers became de facto part of the curriculum, setting the norms for the new culture, 

and the emphasis on utilitarianism and examination results produced little serious 

engagement with substantial mathematical thinking4. The latest Inspectors’ report on 

our secondary schools shows that too many pupils are taught formulas that they do 

not understand, and cannot apply: 

The fundamental issue for teachers is how better to develop pupils’ mathematical 
understanding. Too often, pupils are expected to remember methods, rules and facts 
without grasping the underpinning concepts, making connections with earlier learning 
and other topics, and making sense of the mathematics so that they can use it 
independently. (Ofsted, 2008, p. 5)  

Today, in contrast, a new mathematics curriculum states that for the 11 - 16 age 

group, “Recognising the rich historical and cultural roots of mathematics” is one of 

its “Key Concepts” (QCA 2007)
5
.  

For the last fifteen years very few secondary school teachers have had the chance to 

discover the range and potential of the contributions that the history of mathematics 

could make to pupils’ learning, and with the pressures of ‘teaching to the test’ it 

seems doubtful whether history of mathematics will make any impression in our 

classrooms while the examination structure remains the same6. So, what would 

‘recognising the rich historical and cultural roots of mathematics’ mean in practical 

terms for our teachers? 
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In a recent issue of Educational Studies in Mathematics, colleagues have reviewed 

the evidence, both theoretical and practical, and renewed their call for the history of 

mathematics to be taken seriously as an essential part of the mathematics curriculum. 

Radford et. al. (2007) argue that an important sense of meaning lies within the 

cultural-epistemic conception of the history of mathematics: 

 The very possibility of learning rests on our capability of immersing ourselves !in 
idiosyncratic, critical and reflective ways! in the conceptual historical riches deposited 
in, and continuously modified by, social practices. … Classroom emergent knowledge is 
rather something encompassed by the Gadamerian link between past and present. And it 

is precisely here, in the unravelling and understanding of this link, which is the topos or 

place of Meaning, that the history of mathematics has much to offer to mathematics 

education. (p. 108) (italics mine) 

In the terms described above, history stands in opposition to the utilitarian demands 

of the old curriculum, but having put history of mathematics into the curriculum, the 

government organization, QCA
7
 have now revealed the pressing problems of 

resources and training. Changes need to happen not only in the classroom but also, 

and more importantly, in teacher training. 

So, how can we provide material from the history of mathematics that can be integrated 

in a meaningful and effective way into the everyday activities of the classroom? 

NOT HISTORY BUT HERITAGE  

Ivor Grattan-Guiness (2004) has made an important distinction between the History 

and the Heritage of mathematics. History focuses on the detail, cultural context, 

negative influences, anomalies, and so on, in order to provide evidence, so far as we 

are able to tell, of what happened and how it happened. Heritage, on the other hand, 

address the question “how did we get here?” where previous ideas are seen in terms 

of contemporary explanations and similarities are sought.  

 The distinction between the history and the heritage of [an idea] clearly involves its 
relation to its prehistory and its posthistory. The historian may well try to spot the 
historical foresight - or maybe lack of foresight - of his historical figures, …. By contrast, 
the inheritor may seek historical perspective and hindsight about the ways notions 
actually seemed to have developed. (p. 168) 

…heritage suggests that the foundations of a mathematical theory are laid down as the 
platform upon which it is built, whereas history shows foundations are dug down, and not 
necessarily into firm territory. (p. 171) 

The interpretation of Euclid’s work as ‘geometrical algebra’ has since shown to be 

quite misguided8 as history, but as heritage is quite legitimate because it is the form 

in which some of the Arabs modified the Elements when they were creating algebra. 

We have to be careful. Deterministically constructed heritage conveys the impression 

that the progress of ideas shows mathematics simply as a cumulative discipline. In 
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some sense that may be true, mathematics does build upon past achievements, but 

while we may make stories about the links between the mathematics of the past to the 

present, the mathematics of the past is not the same as the mathematics of now. As 

Mathematics Educators we have a means of passing on the Heritage by bringing to 

the attention of teachers and students the links between the content we find in the 

curriculum, and hence, what we know of the history of mathematics. In this way it 

becomes possible to describe significant landmarks in the history of mathematics in 

terms that teachers and pupils can understand without making impossible demands on 

their historical capability or on curriculum teaching time.  

PROJECT AIMS AND OUTLINE 

This project is just beginning. It arises from the experiences of myself and other 

colleagues in presenting ‘episodes’ from the history of mathematics in workshop 

form, so that interesting and worthwhile problems arise from the historical context.  

At this moment, I am principally interested in providing secondary teachers with 

professional development materials that start from the important fundamental ideas in 

the curriculum they have to teach, and to open up the possibilities of developing the 

concepts involved by finding ‘historical antecedents’ to support the connections 

between and motivations for these ideas and the possible links between them. 

Exactly what form this material may take is still under consideration9. The general 

idea is to produce a series of ‘concept maps’ that are intended to provide a 

topographical view of the significant features of a particular mathematical 

landscape10. A map can be examined and tackled from ‘inside-out’ and from ‘outside-

in’, from following particular trails of thought to obtaining a broader overview of 

historical development. The ‘unravelling and understanding’ of the links between 

ideas, is the topos that Radford and our colleagues (quoted above) are talking about. 

The idea of a map is important here; it is intended to be a guide to how ideas might be 

connected, not a deterministically constructed list of events. In contrast, most 

curriculum activities are presented to teachers as a narrative, a list of topics to teach 

in a particular order, and often restricted to some imagined ‘levels of competence’ of 

the pupils. In many cases, the narrative is also placed in a particular so-called ‘real 

life’ situation which pupils are quick to spot as unrealisitic.11 

A map is there for teachers to have the freedom to make their own narrative. They 

have the responsibility for producing lessons, and it is up to them what parts of the 

map they want to use, and how they approach the pedagogical problems of dealing 

with the curriculum in their own classroom. The map can throw light on certain 

problems, it can suggest different approaches to teaching, it can help to generate 

didactical questions, but in the end it is there to be used or not, appropriately.The 

intention here is to develop ways in which the teacher, starting from a particular point 

in the standard curriculum, will be able to link a conceptual area with important 

developments in the history of mathematics through the use of ‘idealised’ historical 
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problems and canonical situations12. There is a deliberate intention not to teach 

history; instead, - we are dealing with the Heritage of mathematics, namely, of the 

ways and means in which ideas have been interpreted by others at different stages in 

the past. There is, of course, a considerable literature of historical and pedagogical 

material to draw on. The practical task is to find appropriate ways in which to link the 

source material with the curriculum opportunities.  

METHODOLOGY AND PEDAGOGICAL APPROACH. 

Since the English curriculum now focuses more on what we call the ‘process’ aspects 

of learning mathematics, it may now become easier to incorporate the teaching of the 

‘key concepts’ in such a way as to enable the history to emerge from the discussion 

of canonical situations (be they images, texts, or conceptual problems) introduced by 

the teacher. This approach also has the advantage of being able to link different areas 

of a standard curriculum, thereby enabling pupils to see connections between parts of 

mathematics that have been concealed by the traditions of official curriculum 

organisation. When the text-books and exercises are arranged so that their chapter 

headings conform to the same organisation as the curriculum, it is most unlikely that 

pupils will gain any idea that different areas of mathematics are connected at all. In 

this pedagogical strategy we are concerned with the dynamics of production of the 

pupils’ ideas stimulated by episodes from the history of mathematics retold in 

heritage form. In principle, this is not new. I am advocating the use of a methodology 

that is already available, which can bring mathematics education and the teaching of 

history of mathematics together. The principles are well-established, and the use of 

examples has been a tradition in teaching for many years. However, as Sierpinska 

(1994) has recognised:  

 Pedagogues, of course, think of paradigmatic examples …. of instances that can best 
explain a rule, or a method, or a concept. The learner is also looking for 

such paradigmatic examples as he or she is learning something new. The problem is, 
however, that before you have a grasp of a whole domain of knowledge you are learning, 
you are unable to tell a paradigmatic example from a non-paradigmatic one. (pp. 88-89) 

This problem is always present in the classroom, but there are many different ways in 

which we try to alleviate the situation. Grosholz (2005) has demonstrated the role of 

‘constructive ambiguity’ in Galileo’s discussion of free fall,
13

 and shows that 

ambiguity can play a constructive part in mathematics since it leads in this case to 

reading a particular diagram in more than one way. Galileo’s argument was put 

forward in terms of proportions, geometrical figures, numbers and natural language. 

He was then able to exploit Euclidean results and the arithmetical pattern of the 

diagram, but in reading the intervals as infinitesimals he led the participants 

heuristically to his analysis of accelerated motion. Grosholz shows that the use of 

ambiguity in mathematics occurred not only in the past, but is also present today. 

Changing the mathematical context by conceptualising new objects and the processes 

we use to deal with them, changes the ways in which arguments can be understood. 
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This kind of ambiguity has been shown to provide useful material for classroom 

discussion. For example, Barbin (2008), has shown how reading a text as a message 

to an audience can motivate a discussion about the intention and meaning of the 

author, and consequently of the ways it could be interpreted and understood. Other 

ways of approaching pupils’ learning have been to recognise the learner’s inherent 

abilities and a sensitive focussing on what the pupil can do is fundamental in 

Gattegno’s approach which is the basis of much research: 

The role of the teacher of mathematics is to recognise that a student who can speak has a 
large number of mental structures which can serve as the basis for awarenesses that will 
enable him to transform these structures into mathematical ones. (p. 70) 

We of course recognise that there is no sure way of posing problems or offering 

examples, but once done, then the learner’s response has to be respected and 

managed carefully. We have become used to the principles of heuristic teaching, but 

Brent Davis claims that heuristic listening is also important: 

Heurisitic Listening …… is more negotiatory, engaging, messy, involving the heare and 
the heard in a shared project [which] is an imaginative participation in the formation and 
transformation of experience through an ongoing interpretation of the taken-for-granted 
and the prejudices that frame perceptions and actions. (p. 53) 

When we engage in mathematical problems we inevitably construct our own 

examples to help us illustrate the ideas involved, and use these examples as material 

for personal contemplation or discussion amongst our peers. If we do this as adult 

mathematicians, why should it be different for pupils? Why is it not possible to 

develop this idea of self-construction in the classroom?  

Since the early 1960s in England, there has been a tradition of producing materials 

for teachers and pupils that focuses on an individual’s learning process and 

encourages active engagement in, and discussion of mathematical problems
14

. 

Watson and Mason (1998) and Swan (2006) provide practical guidance in ways of 

helping teachers to develop pupils’ powers of constructing mathematics for 

themselves in the classroom:  

Our interest is in using mathematical questions as prompts and devices for promoting 
students in thinking mathematically, and thus becoming better at learning and doing 
mathematics. … We hope our work will show how higher order mathematical thinking 

can be provoked and promoted as an integral part of teaching and learning school 
mathematics, through the teacher’s leadership and example. (p. 4) 

Such publications display through their considerable theoretical analysis and practical 

experience, ideas for situations that are generic and offer ways for teachers of 

promoting ‘Learner Generated Examples’ applicable at all stages of teaching and 

learning mathematics. The materials are prepared to promote the kinds of activities 

that focus on ambiguity, raise doubts about interpretations, and encourage the learner 

(and the teacher) to develop a security with mathematical ideas that enables them to 
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engage in intelligent questioning and active discussion of the problems concerned. A 

number of teachers have engaged in this pedagogy which raises pupils’ learning 

above mere acquisition of skills, and helps the pupils to develop their own cognitive 

tools and to achieve a higher order of mathematical activity.  

THE MATERIALS: DESCRIPTION AND EXAMPLES  

Completing the Square is one of the drafts that has been used in a number of 

classrooms15 and covers is a traditional area of the curriculum showing some of the 

connections between the stages to the solution of quadratic equations. It comprises a 

series of links from one period to another, stressing the transformation of the ideas 

from simple surveying to ‘cut and paste’ problems in Mesopotamia, to more 

sophisticated procedures of ‘dissection and re-arrangement’ in India, and how the 

problems were transposed and represented within the more abstract ideals of classical 

geometry in Greece. The classification of problems and the introduction of algebraic 

concepts by the Arabs, eventually found their way into Europe and resulted in the 

attempts to find solutions of different types of equations. The materials provide 

plenty of opportunities to discuss the development of geometrical and number 

concepts and the way these were represented in text and diagram form (ratios, 

proportions, integers, fractions, rationals non-rationals and eventually ‘imaginary’ 

numbers). Key ideas like the different forms of representation, appropriate notation, 

and whether a particular procedure is ‘allowed’ in a given context, can be discussed, 

and show how finding representations for ‘impossible’ numbers like 3  or "  can 

have a liberating effect in allowing new ideas to flourish. And, of course, there is the 

ever-present idea of ‘infinity’ to be explored. The material has been gathered from 

the expert analysis of many historical documents
16

 and the use of published research 

to attempt to identify and characterise significant moments in the evolution of 

particular ideas. From these examples I have taken, not only the translation of the 

documents into ‘modern’ language, but something of the pedagogical interpretations, 

so that these might be brought into the modern classroom and used in creative ways. 

The material is designed so that it can be used in ‘episodes’ in the normal course of 

teaching in school (not necessarily in ‘historical’ order). Included are notes and 

references to the historical background, and ‘pedagogical notes’ aimed to help 

teachers raise questions and see where the material can be used in their classroom. 

In this way, selections can also be used as a basis for teachers’ professional 

development both in the historical and mathematical sense. 

There are optional entry (and exit) points to the material that allow considerable 

flexibility in its use. These characterisations of the ‘episodes’ are not necessarily 

unique, neither are they exceptional. They are significant in the sense that they apply 

to particular topics (or lack of them) in the English mathematics curriculum, and are 

each recognised as an interpretation of a particular context in our heritage. This is 

where the historical process can be described in terms communicable to a modern 

school audience and furthermore, the teaching is specifically designed to focus on the 
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pupils mathematical activity in the contemplation and discussion of the problems, and 

their opportunity to engage in a dialogue with the material. It is hoped that together 

with the development of the pedagogical methodology described above, we may have 

a chance of truly beginning to recognise “the rich historical and cultural roots of 

mathematics” in our classrooms. 
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UK WEB BASED DOCUMENTS 

a) Pedagogical sources: 

Changes in Mathematics Teaching Project: http://www.cmtp.co.uk/ 

Deep Progress in Mathematics 

http://atm.org.uk/reviews/books/deepprogressinmathematics.html 

 

b) Government documents: 

QCA Website www.qca.org Maths_KS3_PoS.pdf and QCA Maths_KS4_PoS.pdf 

http://curriculum.qca.org.uk/key-stages-3-and-4/subjects/mathematics/index.aspx 

Ofsted UK (September 2008) Mathematics: Understanding the Score 

Download review of mathematics led by Sir Peter Williams published June 2008 

http://www.ofsted.gov.uk/Ofsted-home/Publications-and-research/Documents-by-

type/Thematic-reports/Mathematics-understanding-the-score 

 

COMPLETING THE SQUARE (Some Samples) 

1. Indian Area Methods. 

              

 (a)   (b)    (c) 

These diagrams and are inspired by practical Altar Building rules from the 

Sulbasutras, (15th - 5th Centuries BCE), (c) is the ‘Kite Altar’ still used in Kerala. 

Challenge: It is easy to see how the combined areas of two equal squares can be 

found (a); with only a rope for measuring and drawing arcs, what about the combined 

area of (b)? Allow time for experiment and discussion of pupils’ procedures. Ask 
pupils if they can find any more solutions. Does it work for any size of squares?  

 

 

 

 

 

 

 

(d) 

Activity: Use square dot-lattice paper to draw 

squares with a dot at each corner and no dots on 

the edge. Find their areas using the smallest 

square as the unit. Discuss methods of dissecting 
the squares to find equivalent areas and how these 
may be combined. Display diagram (d) and 
discuss ‘transformation of areas’. 
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There are a number of variations of diagram (d) possible. Further developments could 
explore the visual dynamic of diagram with software; extension to rectangles and 
other shapes; identifying basic properties and justification of procedures. 

Clearly, this can link with ideas from Mesopotamian mathematics and Euclid Book 
II. 

2. The Babylonian Algorithm. 

A number game: “I am thinking of two numbers, their sum is 7 and their product 12, 
what are the numbers?” Extend with increasing pairs of sum and product numbers, 
encourage pupils to discover the original numbers. Pupils to challenge each other, 
share results, and find a way of writing instructions or developing a notation. 

Introduce a standard algorithm: ‘Take half of 7, square it, subtract 12 from this 
square and find the square root of the result, then add and subtract this square root 
from half of 7.’ Use this to test other pairs. If it works for integers, it should work for 
rationals, so try it with simple fractions. This algorithm originates in Mesopotamian 
mathematics and variations of it are found in Al-Khowarizmi, Fibonaci and Cardano. 

Extensions what happens when the pairs are 7, 11 and 7,13? These simple variations 
give non-rational ( 5 ) and complex results ( !3 ) respectively. 

Note 1: I see no problem in introducing quite young pupils to ideas like this. The 
process of ‘following the algorithm’ with simple numbers allows pupils to arrive at 
results which mirror in the discovery of these ‘impossible’ numbers. 

Note 2: In this context, we also have the opportunity of introducing an iterative 
solution method for finding square roots, linked to the famous Old Babylonian tablet 
YBC7289. Discussion about the number that when multiplied by itself can produce 2, 
can lead to pupils’ experimenting and developing their own methods of ‘trial and 
error’. This is also one of the important opportunities to contemplate how we can 
manage and understand an infinite process. 

Note 3: Finding a suitable notation is an important part of mathematical history and 
communication. In most cases in school mathematics notation is given unmotivated 
to pupils. Situations where pupils are challenged to communicate ideas to their peers 
through such examples provide opportunities for exploiting historical analogy. 

                                         
1
 A ‘statutory right’ means that by Law, all pupils at primary and secondary level have the right to 

be taught about the “rich historical and cultural roots of mathematics”. 
2
 The UK mathematics curriculum applies to England and Wales. Due to government devolution 

Scotland and Northern Ireland have different curricula, regulations and examination systems. 
3
 Modules purport to be convenient ‘packages of knowledge’ within the curriculum, with a 

well defined and limited range of knowledge. They are consequently easy to ‘teach’ and 
easy to pass.  
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4
 There are, of course, a number of exceptional teachers who have overcome these difficulties. 

5
 The Key Concepts are: Competence, Creativity, Applications and Implications, Critical 

Understanding, and the Key Processes are: Representing, Analysing, Interpreting and Evaluating, 
Communicating and Reflecting. Applied to all pupils from age 11 to 16 (Key Stage 3 to Key Stage 
4). 

6 Recently, the government has decided to abandon the tests at KS3 (age 14), but persuading 
teachers out of their current ‘mind set’ is going to take time. 
7 The Qualifications and Curriculum Authority, the Government sponsored body set up to maintain 
and develop the national curriculum and associated assessments, tests and examinations. 

8 Typically, this is done with Euclid II,4 and described as ‘completing the square’, but see the 
examples in Katz (2008) 

9 Today, many options present themselves: texts, posters, PowerPoint, DVD are all possibilities. 

10 I make no claims that such a map is (or even could be) ‘complete’.  
11 A serious indictment of this situation is Paul Dowling’s (1998) work on the sociology of 
mathematics education. 

12 By a canonical situation I mean a diagram, or a way of setting out a problem or process which is 
developable, has potential to represent more than one idea, and is presented to students to encourage 
potential links between apparently different areas of mathematics. See the Appendix for an 
example. 
13 Galileo (1638) Discorsi e Dimostrazioni Matematiche Day 3, Theorem 1, Proposition 1 (Dover 

edition p.173). 

14 This kind of material was introduced by the Association of Teachers of Mathematics, and has 
been its enduring hallmark. It is the result of a tradition of collaborative research and writing where 

texts and other materials have developed a particular type of pedagogical practice by offering 

examples of classroom work which require discussion, involve heuristic forms of reasoning, 

analogy and inference, and encourage the learner to create and verify their own examples.  

15 Over the past five years U have used this material, in whole or in part, with various groups of 
pupils from age 11 to 17, with teachers, and with graduate teacher trainees. I gratefully 
acknowledge their feedback, which has been most useful. 

16 For example, over the years I have been able to access the specialised work of many researchers 
on Ancient, Classical, Mediaeval and Renaissance mathematics. Now we can find substantial 
examples of much of the ancient mathematical material collected and specially written up in (Katz 
2007). 
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INTRODUCTION OF AN HISTORICAL AND 
ANTHROPOLOGICAL PERSPECTIVE IN MATHEMATICS: AN 

EXAMPLE IN SECONDARY SCHOOL IN FRANCE 

Claire Tardy1 

Viviane Durand-Guerrier1,2 

Université de Lyon, Université Lyon 1, IUFM de Lyon1, LEPS-LIRDHIST2 

Abstract: To introduce an anthropological and historical perspective in mathematics 

from middle school is a challenge that we have tried to face for several years. We 

first present what we mean with “an anthropological and historical perspective in 

mathematics”, our theoretical references, including didactics one, and our 

motivations for choosing the thematic of irrationality. In the second part, we will 

present elements of three experimentations done at grade 8 (13-14) and grade 10 

(15-16). 

Key-words: History of mathematics – Anthropological approach – Didactics of 
mathematics – Epistemology - Irrationality  

I. MOTIVATIONS  

In France, attempts to introduce an historical perspective in mathematics have been 

developed for several years, in particular, but not only, through the IREM 

Commission on History and Epistemology of Mathematics3. Some historical elements 

are also often introduced in textbooks (but most often without taking in account 

mathematical considerations). Beyond this, a crucial issue in a didactic perspective is 

the way it is possible to articulate historical elements with the mathematical 

knowledge to teach at the various levels of the curriculum. To approach 

mathematically historical texts necessitates most often an important effort for their 

understanding, and the possibility to put in relation these texts with the mathematical 

contents to teach is difficult and far to be an evident choice, due in particular to the 

fact that the modern concepts are more efficient to solve the related problems. This 

could explain the rather common choice of limiting the introduction of history to 

informative aspects aiming mostly to motivate the students. Although this aspect is 

not to neglect, because it could permit to modify the common representation of 

mathematics as timeless knowledge, it does not take in account the potential 

contribution of History of Mathematics for the learning of Mathematics itself. As 

Bkouche (2000), we consider that an historical perspective in teaching of sciences 

« can be inserted less as a motivation than a problematisation » in the following 

meaning: “Epistemology of problems aims to analyse how the problems that lead 

humanity to elaborate this mode of knowledge that we name scientific knowledge 

have modelled the theories invented in order to solve these problems”4. 
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II. THEORETICAL BACKGROUND 

II.1. Anthropological fundaments of mathematics  

In continuity with Tardy (1997), we have chosen to situate the historical perspective 

in the field of Anthropology. Chevallard (1991) considers that Didactics of 

mathematics is the “advance point of the anthropological continent in the 

mathematics universe”, that specifies its place in the field of Anthropology. In this 

perspective, he mainly studies the didactic transposition, i.e. the transformation 

underwent by mathematical knowledge when they are taught and used. For him, 

“present epistemology” studies the question of knowledge production while he 

considers Epistemology in the broader sense of Anthropology of knowledge.  

In this paper, we refer to the sense of “present epistemology”, including 

anthropological considerations, according to Kilani (1992) that Anthropology search 

relations between local knowledge or specifics discourses on cultures to global 

knowledge or general discourse on humanity. 

II.2. Genetic psychology and Anthropology 

Genetic Psychology elaborated by Piaget questions Anthropology. Opposite to 
Piaget, present Anthropology does not consider hierarchy among different stages. 
The stages that Piaget has distinguished (practical intelligence; subjective, egocentric, 
symbolic or operative thought) cross the interrogations of Anthropology on the 
relationship between culture and thought, leading to debate around myth and 
rationality, magic and science and the way to pass from an aspect to another. 
Anthropology states that operative and symbolic thoughts have different purposes; 
that they do not exclude each other, coexisting in a singular person as well as in a 
given society5. Moreover, it could be thought that Imaginariness as well as reason 
could play a role in scientific discoveries (Kilani, 1992) 

Following Vergnaud, we can add that in mathematics activity, these different modes 

of thoughts are necessary and complementary.  

“Explicit concepts and theorems only form the visible part of the iceberg of 
conceptualisation: without the hidden part formed by operative invariants, this visible 
part would be nothing. Reciprocally, we are unable to talk about operative invariant 
integrated in Schemas without the categories of explicit knowledge: propositions, 
propositional functions, objects, arguments.” (Vergnaud, 1991, p.145)6

 

II.3. The epistemological model of « milieu » in the Theory of Didactical 
Situations (Bloch, 2002) 

# About the concept of milieu  

The concept of « milieu » plays an important role in the Theory of Didactical 

Situations (Brousseau, 1997). Several authors have reworked and developed this 

concept, which was one of the thematic of The 11th Didactic Summer School in 
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France in 2001. From our perspective, the models of milieu presented in this frame by 

Bloch is particularly enlightening.  In her course’s introduction7, Bloch indicates:  

“In this course, we aim to attempt a clarification of some fundamental concepts of Theory 
of Didactical Situations, and for this purpose to propose a reorganisation of the models of 
milieu of this theory to predict and analyse teaching phenomena. It is clearly an 
elaboration aiming to classify the theoretical elements related to the milieu according 
with their functionality (from knowledge; from experiment; from contingency)” (Bloch, 
2002, p.2)8.  

This leads her to propose the three following models: the epistemological milieu that 

concerns the cultural knowledge and their organisation, and the fundamental 

situations - the experimental a priori milieu, that concerns the researcher work 

preparing the relevant teaching situations, and the milieu for the contingency 

concerning the effective realisation of these situations. In this section we focus on the 

epistemological model. 

# About fundamental situations 

For Brousseau, a fundamental situation for a given knowledge ought to permit to 
generate a family of situations characterised by a set of relationships between student 
and milieu permitting to establish an adequate relationship to this knowledge. 

# The need of a model of epistemological milieu 

 To give a definition of what could be an adequate relationship to a given 

knowledge is not so easy that it could appear at first sight. It is the task of a 

researcher who attempts to elaborate a model of epistemological milieu: 

“Such a model (written MiT ) is elaborated taking in account the cultural mathematical 
knowledge, but is not restricted to it. To elaborate milieus consists in grouping problems 
that do not necessarily obey strictly to the knowledge organisation, thus a conjunction of 
mathematical, epistemological, and referential practices is necessary. I will add and of 
identification of knowing. Thus, one has to take into account not only problems for which 
this knowledge is functional, but also the relationship between these problems, and as far 
as it is possible, the related knowing (possible actions, intuitions, personal and cultural 
references) that the student could be able to actualise in the situation. “ (Bloch, 2002, p.5) 

Our ambition, in this research, was not to elaborate a fundamental situation for a 

given notion (for us the notion of irrational number), but to attempt to enrich the 

net of relevant problems for the learning of this notion, leaning on a study (non 

exhaustive) of « the historical genesis of the knowledge concerning this concept 

and its ancient or contemporaneous occurrences, its functionalities in 

mathematics... » (Op. cit.  p.7) as well as its links with other fields of human 

activity (philosophy ; sociology ; history ; psychology ; didactics …), all links 

that have to be taken in account in the elaboration of an epistemological milieu 
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as defined above. This permits to clearly investigate the way to elaborate the 

milieu for a teaching situation aiming to integrate this historical genesis and this 

anthropological perspective. In other words, how to make possible that historical 

or cultural references, beyond their function of motivation, contribute in a 

genuine way to the teacher’s project of the elaboration by students of knowing 

coherent and consistent with the involved knowledge. We will give further some 

elements that we have identified in this research. 

III. AN EXAMPLE IN SECONDARY SCHOOL:  IRRATIONALITY 

III.1. Preliminary: a logical point of view 

In a major work of Analytic Philosophy9, the philosopher and logician Quine support 

the thesis that attributing a pre logical mentality to natives is wrong; in particular, 

rather than considering that they have contradictory believes, we have better to bet on 

an inadequate translation, or in a domestic situation10, on a linguistic disagreement. In 

other words, the irrationality or the incoherence of humans is less probable than a non 

adequate interpretation by the observer of the provided indicators. We have shown 

(Durand-Guerrier, 1996) an example of the domestic version in mathematics 

education in order to lift a suspicion of incoherence that might bear on students’ 

responses11. Matters concerning contradiction, rationality and irrationality are 

subjects of study for logicians, either those attempting to elaborate systems accepting 

contradictory propositions, due to the fact that such propositions are everywhere in 

ordinary life (e.g. Da Costa, 1977), or those developing theories taking in account 

simultaneously syntactic, semantic and pragmatic considerations in natural 

languages12. In this perspective, the Model Theory developed by Tarski (1936) offers 

a relevant theoretical framework to deal with the questions of necessity and 

contingency, and to treat apparent contradictions (Durand-Guerrier, 2006, 2008).  

The project of Granger (1998) is « to consider the sense and the role of irrational in 

some human works, in some major creations of human spirit, and particularly in 

sciences. »13 (Op.cit. p.10). From an author who has devoted his work to description, 

analysis and promotion of what is rational in human thought, this is not an apology of 

irrationality, but the testimony of an inscription in « the perspective of an open and 

dynamic rationality, in order to recognise and delimitate the role of what is positive in 

irrational. » (Op.cit. p.10). Indeed, Granger considered that « the irrationality, 

eminently polymorphic, draws in hollows, so saying, the form of rationality (…), and 

always supposes, at least for analysis, a representation of what it is opposing with.” 

(Op.cit.  p.9) 

According to us, theses short insights show that the crucial opposition in number 

theory between rational and irrational number, articulated with the opposition 

between coherence and contradiction, is a candidate for our exploration. 
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III.2 Our research hypotheses 

Two main hypotheses are structuring our work. The first one is that the problematic 

of the articulations between various modes of thought, in particular the relationship 

between Science and Myth, Rationality and Beliefs, is relevant for the study of 

anthropological fundaments of mathematics. The second one is that, through the 

intermediary of the genesis of mathematical knowledge, we will be able to achieve an 

anthropological thought concerning mathematics and their links with the various 

modes of human thoughts. 

III.3 The inscription of Irrationality in our investigation 

The term Irrational (in Greek: alogon) has two main significations. First, it means « 

without a common measure; that cannot be measured as a quotient of two integers ». 

Second, it means « that is unable to insure the coherence of discourse; illogical ». For 

Granger (1998) the encounter of irrational numbers in Greece was an example of 

what he named « the irrational as an obstacle, starting point of the conquest of 

rationality anew  ». This leads to two partly philosophical questions: in what consists 

really the obstacle?  In what consists its resolution? Arsac (1987) supports that the 

encounter with Irrationality is at the origin of the transformation of mathematics in an 

hypothetical deductive system. Of course, it is clear that the confrontation to 

Irrationality only is not sufficient to create anew the conditions of the apparition of 

the proof, but this invites us to turn toward an interdisciplinary approach of rigor, that 

we have modestly done in our work. If students of grade 8 or 10 are not a priori able 

to overcome the epistemological obstacle14 (indeed, it would be necessary to work 

along two axes: Euclid Theory of grandeurs; and a real number construction), our 

weaker hypothesis is that the confrontation of students with a mathematical or an 

interdisciplinary work about Irrationality could permit them to approach the question 

of the nature of this obstacle. 

IV. OUR DIDACTIC INVESTIGATION 

IV.1. General conditions for a didactical situation in our perspective 

In coherence with our theoretical exploration, we propose conditions that a didactical 

situation dedicated to the introduction of an historical and anthropological 

perspective for a given knowledge in mathematics in secondary school ought to fulfil. 

1. The situation leans on a moment well identified of the genealogy of this 

knowledge. 2. The situation permits to question the formidable efficacy of 

mathematics to act in real world15. 3. The situation fulfils the minimal conditions of a 

problem situation, in particular favouring framework changes (Douady, 1986). 4. The 

milieu is rich enough to provide retroactions permitting to go forward in the situation 

and conditions for an intern validation. 5. From the situation, a contradiction between 

a priori beliefs and constraints from reality would emerge. 6. The situation permits to 

end up in an institutionalisation of the involved concept in coherence with the 
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curriculum, and of the specific contribution of mathematics to a more general 

problematic, linked most often to Human and Social Sciences. 

IV.2. Brief description of the experiment in grade 8 

This experiment took place in December 2000 and January 2001, in an 

interdisciplinary project. It comprised four sessions in History course (18th century); 

five sessions in French course, on the thematic of rational and irrational; and four 

sessions of mathematics that we describe below.  

# First session: construction of a square from a pair of superposable squares with 

sides of 10 cm, using a minimal number of cuttings with scissors; elaboration 

of a proof that the figure is actually a square. 

# Second session: synthesis of the proofs elaborated in first session; investigation 

in order to determine the area of the big square. 

# Third session: enlightening of the fact that the length of the side of the big 

square is not a decimal number. Emergence of the following question: is it a 

rational number? 

# Fourth session: elaboration of a proof that is not a rational number. 

Information about the circumstances of this discovery; historical and 

anthropological aspects; links with what have been done in History and 

French’s courses. 

In April 2001, an evaluation has been done through a role game (Pythagoras’ Trial) 

organised by the three teachers involved in the experiment. 

IV.3. Some results of the experiment in grade 8 

The interdisciplinary work has permitted to make explicit the links, although students 

have not always perceived them. Concerning mathematics, it is necessary to find a 

balance between levels of difficulty on the one hand and interest and relevance of the 

problem on the other hand. This is the case in general for problem situations, but here 

due to the conceptual ambition it is more acute. Teachers do not wish that their 

students face difficulties; but the contents, although they do not really exceed the 

programs, mobilize cognitive capacities hardly required in the ordinary school 

mathematical work. However, the effective experiment permits to enlighten that most 

students appreciated this type of problem and were able to provide rich and relevant 

arguments. 

Students have dealt with the following mathematical notions: area of a square by cut-

out; property of areas to be additive; units; recognition of equality of two squares 

constructed by two different methods; calculations on decimal numbers, on rational 

numbers; interrogation about results given by a calculator. Moreover, they have 
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developed argumentation and deductive reasoning in geometry (for example, justify 

that a figure is a square), and in the numerical field (it is impossible that the square of 

a decimal / a rational number be equal to 2). Notice that the last proof is that one 

using the possible digits of the numerator and the denominator, and reductio ad 

absurdum (or infinite descent). 

The analyses of the evaluation (Pythagoras’ trial) on the one hand, and of three 

interviews of students on the other hand, give us a posteriori information. The 

development of the trial seems to indicate that students have understood the 

arguments; have discussed together, but did not have enough time for a right 

appropriation of the working of a trial. Here are some arguments developed buy 

students: “If the diagonal of the square is neither an integer, nor a decimal, nor a 

rational, he (Pythagoras) has not invented, for this length existed.” / “The accusation: 

it is serious not to reveal this discovery, it is a lost of time -The defence: he will not 

have been believed. - The accusation: but he had explication! It will have end that he 

will be believed; he had a theorem.” / “If he revealed the irrational numbers, his 

whole previous theory would have been wrong.-  these number frighten -  to say these 

numbers would have caused the end of the world ; it would have disturbed 

everything.” (this student makes a distinction between ordinary people and 

scientists). / “When he (Pythagoras) said everything is number, he was not lying 

because at that time, he did not know about the existence of irrational number.” 

The interviewed students remembered precisely what had been done in the four 

sessions of mathematics. The link between Irrationality in Mathematics and in French 

and /or History courses is not done by all of them, but one of them summarized it 

saying “when we see the superstitions of humans, the sects, it may disrupt the world, 

and the number too, it may disrupt the world. There is a small link, but it is different.” 

This project provides an alternative to the aspect “tools” generally devoted to 

mathematics. Although this aspect “tools” is quite relevant, many teachers perceived 

it as a reduction of what is mathematics really. This project permits that school 

mathematics also play their role, beside others disciplines, in the elaboration of 

elements of human culture, beyond the strictly technical aspects, that an excessive 

recourse to algorithms tends to reduced it to. 

IV.4. Brief description of the experiment in grade 10 

The experiment took place in 2002-2003 by an experienced teacher, and in 2006-

2007 by a prospective teacher in the frame of the professional dissertation in the 

Teacher Training Institute (IUFM) in Lyon.  It comprised five sessions  

# First session: Introduction of the problematic of incommensurability through 

the following problem: given a square ABCD, is it possible to find a unit 

measuring both the side and the diagonal of the square; you may use calculator 

but not the key of square root. Students worked first in small groups; a square 
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of side 12 cm had been provided; the synthesis was collective in the whole 

class. 

# Second session: Working on the link between Incommensurability and GCD 

(Euclid Algorithm) in the whole class. 

# Third session: Proof of the incommensurability of the diagonal and the side of 

a given square, by reductio ad absurdum in the geometric framework. 

# Fourth session: Irrationality of ; approximation by rational numbers. 

# Fifth session: work on texts and documents; realisation of posters. 

IV.5. Some results of the experiment in grade 10 

In grade 10, the teachers consider that the first four sessions were rich for the 

following reasons. 1. They give a meaning and a legitimacy to proof, as said a 

teacher. « Indeed, some students have difficulties to understand the necessity of 

proof.  When we propose a proof for a problem for which they know the result, they 

do not understand why proving. Here, a debate rose at the first session. Some were 

convinced of incommensurability of the side and the diagonal of the square, but 

others were not. The objective of the proof was to convince, to argue. Let us notice 

the role of reductio ad absurdum in the third session; however it is not involved a 

priori in the numerical field to prove irrationality, but in the geometrical situation that 

permits to prove this incommensurability; moreover this incommensurability has 

been studied experimentally in the first session (in a geometrical or numerical field, 

according with the process used by students), that permits to pose the problem in a 

better way » / 2. “They make links between numerical and geometrical field. Some 

notions allowing solving the problem have got signification for students as GCD or 

Euclid algorithm.” / 3. “These sessions have permitted an evolution of the vision that 

students had of mathematics:  « we have enlightened the fact that the construction of 

mathematics did not occur in a linear way but through ruptures ». So they could 

change their mind that mathematics « go on their own ». As sometimes 

mathematicians face difficulties to apprehend some notions, students realise that their 

own difficulties were normal.” / 4. “They permit to revised various mathematical 

notions: GCD – Euclid Algorithm – Pythagoras theorem – rational number …” / 5. 

“All students have been involved in this work (as well at school as for homework), 

and interested whatever their level.” 

CONCLUSION  

We thought we have given some evidence (in an existential sense) that it is possible 
in grade 8 and 10 in France to do an interdisciplinary work, structured around a 
mathematical notion, for which a study, even partial, of the historical genesis permits 
to enlighten the anthropological dimension in the sense we have defined above. 
Irrationality appears so as a paradigmatic theme, or even an ad hoc theme, of what we 
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aim to develop. That other notions could permit such a work remains for us an open 
question, but it seems to us that it would be possible to find candidates towards 
themes common to mathematicians and philosophers, sociologists, historian, without 
forgetting artists: propositions; infinity; emptiness; space-time; paradox; truth; 
necessity; transcendence…. 

In France, there exits a priori some institutional niches where organising such a work 
permitting that mathematics were not only a tool for other disciplines, but took part in 
the search for links between different ways to understand the world. Nevertheless, it 
necessitates from teachers a genuine engagement and an enthusiasm that, in general, 
the schooling institution does not favour.  
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1 Institute for Teacher Training 
2 LEPS-LIRDHIST : Laboratoire d’Etude du Phénomène Scientifique, EA 4148, équipe Didactique 
et Histoire des Sciences et des techniques 

3 The “Commission Inter IREM d'Epistémologie et Histoire des Mathématiques” was created  on 
May 10th 1975. Since this date, three meetings and a conference are organised each year. Several 
national and European summer schools are organised. Its members take part every four years to the 
international ICME and HPM conferences.  
4 Our translation 

5 See for example Barthes (1957). 

6 Our translation 
7 We refer to the electronic version of the CD-ROM in the Proceedings of the 11th Summer School: 
Dorier & al. (2002)  

8 Our translation 
9 Quine (1960) Word and object 

10 That means our co speaker 

11 Durand-Guerrier (1996) pp. 276-280 
12 The use of such a perspective in primary and lower secondary education can be found in Durand-
Guerrier & al (2006)  

13 Our translation 
14 This notion introduced by Bachelard has been used in mathematic education (Brousseau, 1998)  

15 In reference to a famous quotation attributed to Einstein. 
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The official textbooks for the teaching of mathematics in the Greek high school (7
th
-

9
th

 grades) include a lot of historical material, following the guidelines of the new 

curriculum: historical snippets and historically motivated activities, aiming to 

provide teaching tools for better understanding the mathematics. However, their use 

is questionable because of serious historical errors, obscurities, or omissions. We 

support this conclusion by some examples, suggest alternative ways to use this 

historical material, and outline a more demanding and deep way to use the history of 

mathematics as a teaching tool that has been implemented in the context of cross-

curricular activities.  

Key words: historical snippet, mathematics curriculum, cross-curricular, original 
sources, junior high school. 

INTRODUCTION 

In the last two decades, there is an internationally increasing interest in introducing a 
historical dimension in mathematics education (ME), both in didactical research and in 
the context of educational policy, curriculum design and textbook content. This is 
reflected in the appearance of several publications, the organization of conferences and 
meetings, especially in the context of the so-called HPM Group (e.g. Fauvel & van 
Maanen 2000, Siu & Tzanakis 2004, Katz & Michalowicz 2005, Schubring 2006, 
Furinghetti et al 2006, 2007, Barbin et al 2008). In Greece, there has always been an 
active interest in this area, as early as the late ‘80s, mainly in didactical research 
(Fauvel & van Maanen 2000 §11.8, Kastanis & Kritikos 1991, Thomaidis et al 2006, 
Chasapis 2002, 2006) and occasionally in the inclusion of short historical comments in 
school textbooks. It seems that among other things, the influence of the work of 
researchers and educators, active in this area, led the Ministry of Education and its 
associated authorities to become more attentive to what international research and 
practice suggests concerning the role of the History of Mathematics (HM) in ME. As a 
result, for the first time in Greece the (new) mathematics curriculum for compulsory 
education (officially announced in 2002 -see Pedagogical Institute 2002- and 
implemented via newly written textbooks since 2007) includes so important and 
extensive references to the didactical integration of the HM into the teaching of 
mathematics. These references vary from the specific teaching objectives, to the 
didactical methodology and the textbook content. The following extracts are indicative 
(Pedagogical Institute 2002 pp.311, 367-369, our translation): 
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Special objectives: “….. to reveal the virtue of mathematics (historical evolution of 

mathematical tools, symbols and notions).” 

Didactical methodology: “... It is important to provide students with “safety valves” 

in the pursuit of knowledge; namely, students should be given the possibility to 

approach a notion in a variety of ways, i.e.: 

-By means of several different representations (using symbols, graphs, tables, 

geometrical figures); 

-In an interdisciplinary way; 

-With reference to the HM (the HM is a field rich of ideas to approach a notion 

didactically).” 

Didactical material: “... Moreover, reference to the great historical moments that 

step by step have determined the development of mathematics should be included in 

the mathematics textbooks, so that the student becomes aware of the genesis of the 

ideas, which is a prerequisite for grasping each subject. It is not necessary that the 

historical notes appear separately at the end of each §. (If required), they can also be 

(briefly) presented, at intermediate parts of the text.” 

Although these guidelines follow what didactical research seems to suggest 

nowadays, focusing on the important role HM can play in ME, their actual classroom 

implementation is far from being satisfactory. More specifically, the authors, who 

participated in the competition for writing the textbooks according to the new 

curriculum1, have tried to follow these guidelines, incorporating in the new 

mathematics textbooks a great deal of material from the HM in the form of historical 

notes and associated activities. These notes and activities (called historical snippets; 

Fauvel & van Maanen 2000, ch.7) have different format and colors from the main 

text and usually contain pictures. Here we examine critically the validity of the 

material in question and its relevance to what is referred to in the curriculum, by 

means of specific examples. Then, we proceed to suggest other ways to integrate the 

HM in teaching, by taking into account some modern trends in this direction. 

THE VALIDITY OF THE HISTORICAL TEXTBOOK MATERIAL AND ITS 
RELEVANCE TO THE CURRICULA SPECIFICATIONS  

The quotations from the mathematics curriculum in §1 directly connect the use of the 
HM with a central issue of teaching and learning: how to pursue and grasp knowledge. 
Thus historical snippets in the textbooks should not be limited to factual information, but 
contribute to understanding the notions to be taught (Fauvel & van Maanen 2000, 
§7.4.1); they should provide the teacher with ideas and material to organize teaching and 
motivate students to learn. Therefore, they should meet two reasonable requirements: (a) 
to be mathematically and historically correct; (b) to serve the objectives of the teaching 
units in which they are incorporated. 

Unfortunately, in many cases the historical snippets in the new high school textbooks do 
not satisfy these requirements; the authors’ insistence on restricting the historical 
material to (often inaccurate and contradictory) biographical information, is a typical 
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case. In general this material is presented in an informal style, inserted in separate boxes 
in the text, usually with emphasis put on the historical facts, rather than the mathematical 
exposition. In some cases it also includes related activities (cf. Fauvel & van Maanen 
2000, §7.4.1). Table 1 gives a summary of the historical material in the new textbooks: 

Table 1 

Grade Number of 
historical 
snippets 

Percentage of 
textbook pages 

covered 

Percentage of 
snippets which 

include activities 

 
Comments in the teachers book 

7 21 11/220 = 5% 5/11 = 45,5% No comments on the HM 
8 9 6/230 = 2.6% 0/6 = 0% 2 additional activities are recommended 
9 5 5/240 = 2.1% 2/5 = 40% 10 additional comments covering 12 of the 

100 pages (1 activity recommended as an 
interdisciplinary activity. 

We illustrate this material and its weaknesses by means of some indicative examples, 
mainly from the 7th grade textbook (Vandoulakis et al 2007, Vlamos et al 2007)2. 

Example 1: factual information; no mathematics involved 

In the 7th grade textbook, the authors cite 3 different “estimates” of Euclid’s lifetime 
giving contradictory results: p.26: Euclid (330-275 BC); p.147: Euclid (300-275 BC); 
p.182: Euclid (330-270 BC). Here it is ignored that the only existing valid historical 
source on this point, is an extract from Proclus’ Commentary on the First Book of 
Euclid’s Elements with no possibility to specify an exact time period (see §4, here). 
In addition to historical confusion, this note does not serve any of the purposes of 
introducing HM in teaching as detailed in the new curriculum (cf. § 4 below). 

Example 2: factual information; reference to mathematical & scientific results 

In the same textbook (p.29), brief information is given on the life and scientific 
achievements of Eratosthenes in a separate box, in which the life period of 
Eratosthenes and some of his achievements (e.g. the measurement of the earth’s 
circumference) are simply stated. It is claimed that: Eratosthenes lived from 276BC 
until 197BC; from 235BC and for 40 years he was director of Alexandria’s famous 
library; at the age of 82, he committed suicide because he became blind. The dates 
referred to in that note are contradictory, however: Since 276-197=79 and 235-
40=195, Eratosthenes lived 3 years less than the age at which he died, and he directed 
Alexandria’s library for two years after his death! This note could include interesting 
activities in accordance to the regulations of the new curriculum (e.g. the simplicity 
of the measurement method of the earth’s circumference); instead, it is restricted to 
simply assert the results, which is mystifying, rather than enlightening! 

Example 3: fiction, mathematical results and a related mathematical activity 

Occasionally, the historical narrative is fictitious. In the 7th grade textbook, historical 
accuracy is sacrificed in favor of a controversial story, aiming to dramatize an episode 
from Gauss’ childhood (p.75, our translation): 

“Sometimes a simple thought of a man is more worthwhile than the whole world’s 
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gold. With some clever ideas battles are gained, monumental pieces of work are 

done, people become famous and at the same time, science is developed, technology 

evolves, history is shaped and life changes. Just an example is the “smart addition” 

that Gauss (Karl Friedrich Gauss 1777-1850) had thought of in a small German 

village, around 1789, when he started learning about numbers and arithmetical 

operations in his first year at school. When the teacher asked his students to calculate 

the sum 1+2+3+...+98+99+100, little Gauss had found it before the others even 

started. Then, he wrote on the blackboard:  

(1+100)+(2+99)+(3+98)+...+(48+50)+(50+51)= 
101+101+101+...101+101+101=101·50=5.050 

Try to calculate in Gauss’ way the sum 1+2+3+...+998+999+1000 and measure the 

time needed. How much would it have taken if you had calculated it with the normal 

addition?” 

Firstly, Braunscheweig, where Gauss was born and lived was not a village, but a 
political and cultural center, capital of a ducat, with approximately 20.000 residents 
in the late 18th century. Secondly, given that Gauss was characterized as a “child-
prodigy” in mathematics from the age of 3, how is it possible that he started learning 
arithmetical operations as late as 1789, at the age of 12? We do now that Gauss 
entered the Volksschule (elementary school) in 1784, i.e. at the age of 7, the 
Gymnasium in 1788 and the Collegium in 1792 (Wussing & Arnold 1978, p.318). 
Moreover, Gauss died in 1855, not 1850!  

In addition, this note starts with an extreme statement, suggesting that 
mathematical progress is due to a few geniuses, not a collaborative enterprise in 
which personal skill is harmoniously combined with preceding achievements of the 
scientific community at the right moment. Thus, it implicitly gives a distorted view 
of history, which, considered didactically, is expected to discourage rather than 
engage students in mathematical activities in the classroom. Hence, this example 
shows lack of relevance of the textbook’s historical material with the curriculum 
objective “to provide students with ‘safety valves’ in the pursuit of knowledge”. 

Example 4: historical snippets with historically motivated mathematical activity  

In the same textbook there is the following activity (p.75, our translation): 

ACTIVITY: On a gravestone the following problem is inscribed, whose solution 

gives the age of the great ancient Greek mathematician Diophantus: 

“This tomb holds Diophantus. Ah, how great a marvel! The tomb tells scientifically 

the measure of his life. God granted him to be a boy for the sixth part of his life, and 

adding a twelfth part to this, he clothed his cheeks with down; He lit him the light of 

wedlock after a seventh part, and five years after his marriage He granted him a son. 

Alas! Late-born wretched child; after attaining the measure of half his father’s life, 

chill Fate took him. After consoling his grief by this science of numbers for four years 

he ended his life.”
3 
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This activity, included in the chapter “Equations and Problems”, is not 
accompanied by any query! In the teacher’s book, we find (p.53, our translation): 

“A. 4.2. Problem Solving: Indicative design of the material of this unit.  1 teaching 

hour. The suggested activity aims to understand: The notions used in problems, 
their solutions, as well as, the solution process we follow [Answer: Diophantus 
lived for 74 years]”. 

If this requests the formulation of an appropriate equation for Diophantus’ age x, 
then the data in the epigram imply: 

x x x x
5 4 x x 84

6 12 7 2
+ + + + + = ! =  

Historically it may be asked where lies the gravestone, in which this problem can 
be found? We do know that this story is included in the Palatine Anthology, of the 
Byzantine era and there is no other reliable evidence for it. Didactically, the question 
is whether 7th graders are able to formulate and solve this equation, given that solving 
such equations is taught in the 8th grade! This clearly shows that some historical notes 
are related neither to the mathematics of the textbook unit in which they are included, 
nor to the cognitive level of the students to whom they are addressed. 

The same epigram appears in an introductory note in the chapter on “Equations 

and inequalities” of the 8th grade textbook with the following comments (Vlamos et 
al 2007, p.120, our translation): 

“…From his [Diophantus’] 13 pieces of work only 10 had been found (6 in Greek 

manuscripts and 4 in Arabic translation). The most famous of his works is the 

“Arithmetika” (6 books). It is the most ancient Greek work in which for the first time 

a variable is used in problem solving…When he died, …his students composed a 

riddle and wrote it on his grave, upon his request.  Here is Diophantus Epigram…” 

According to Diophantus’ own statement, Arithmetika were divided into 13 “books”; 
6 have been preserved in the Greek original and 4 in Arabic translation of the 9th century 
discovered in the late 1960’s. We also know another of Diophantus’ works - “On 

polygonal numbers” – only fragments of which survive. Therefore, in the textbook, 
confusion is made between the 13 books of “Arithmetika” and the total number of his 
works. 

SOME CONCLUSIONS 

All examples in §2 concern historical errors (there are still more, simply reinforcing 
the bad impression one gets from the textbooks’ historical snippets) that nevertheless, 
could easily be corrected in a new textbook edition, though it is strange that they have 
not been avoided. It seems as if they were written hurriedly and without further 
check, mainly aiming to satisfy the relevant term of the announcement of the 
textbook writing competition and not to introduce a historical dimension in teaching. 
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The main characteristic of the historical material incorporated in the new mathematics 
textbooks is the large amount of information and the rich illustrations, without however 
some methodological hints of how to benefit didactically from this material. Although, 
the corresponding suggestions and instructions in the teacher’s book in general 
emphasize the positive contribution of the HM, the way this could be realized is left to 
the initiative and ideas of the teacher, with reference to the relevant bibliography. This is 
what can be concluded by simply reading the corresponding instructions given in the 
teacher’s books. E.g., the teacher’s book for the 7th grade mentions that: 

“In some sections, there are historical notes, which intend to stimulate the student 

interest and love for Mathematics and to inform them on the historical development 

of mathematical thinking. Their use in teaching depends on the initiative and the 
ideas developed by the teachers” (Vandoulakis et al 2007, p.31, our translation) 

In the teacher’s book for the 9th grade this issue is detailed more: 

“In some units there are topics from the HM intended to give the description of the 
problem that has been posed and the presentation of the conceptual tools applied to 
solve them. These topics, with the accompanying questions, aim to exploit the HM in 
the best possible way. Integrating the HM in teaching has become the subject of 
systematic studies at an international level. The positive contribution of the HM is 
corroborated in three groups of arguments: 

(a) It stimulates students’ interest and contributes to the development of a positive 
attitude towards mathematics. 

(b) It reveals and stresses the human nature of the mathematical activity throughout 
history. 

(c) It contributes to the understanding of mathematical concepts and problems, 
revealing not only the context and circumstances in which they originated, but also 
the conditions of their development. 

These topics [from the HM and the accompanying questions], together with those 
points raised in the teacher’s book, should not be considered as complete studies; it is 
for this reason that references to the literature are given for those teachers and 
students who will have a special interest.” (Argyrakis et al 2007, pp.10-11, our 
translation) 

Remark: Points (a)-(c) form part of the arguments for integrating HM in ME, put 
forward more systematically in Fauvel & van Maanen 2000, §7.2 (particularly 
§§(a1), (c1), (d1).  

To introduce a historical dimension in the teaching of mathematics, based on the 
interest, initiative and ideas of teachers, needs extra teaching time of course. But, apart 
from the usual obligation to cover the school material (a very difficult problem in 
itself!), teachers have also to cope with the innovations of the new curriculum, like 
group-cooperative teaching based on learning activities, or an interdisciplinary 
approach to mathematics. Adding the introduction of a historical dimension to the 
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benefit of both teachers and students, requires additional support in the form of 
detailed guidelines (e.g. examples serving to illustrate how history could be integrated 
into teaching), extensive references for further reading and availability of relevant 
source material. Unfortunately, existing source material is limited (especially in 
Greece), a key issue already stressed several years ago (Fauvel & van Maanen 2000, 
p.212). In addition, from the evidence cited here, it is clear that the material of the new 
textbooks is not the most appropriate and valid guide in this direction. Therefore, it 
seems that high school mathematics teachers are not given any real motivation to take 
up the initiative to benefit from the new textbooks’ historical material. In the next 
section, we examine whether the available historical snippets (of course free from 
mistakes and contradictory information) can contribute positively to the teaching of 
high school mathematics.  

USING HISTORICAL SNIPPETS IN CROSS-CURRICULAR ACTIVITIES 

The errors in the historical notes of §2 indicate that integrating the HM in ME is a 
demanding activity, presuming, not only mathematical knowledge and the ability 
to approach, read and interpret the historical sources, but also to cross-check facts, 
to conclude and narrate. This seems to suggest cross-curricular activities as a 
privileged framework in this connection. Fortunately, such activities form an 
integral part of the new curricula and high school textbooks in Greece and a good 
example in this context could be the determination of Euclid’s lifetime. As 
mentioned in §2, the only valid historical source on this point comes from Proclus, 
who lived in the 5th century A.D. In his Commentary on the 1st Book of Euclid’s 
Elements, he writes: 

“[Euclid] lived in the time of Ptolemy the First, for Archimedes, who lived after the 

time of the first Ptolemy mentions Euclid. It is also reported that Ptolemy once asked 

Euclid if there was not a shorter road to geometry than through the Elements, and 

Euclid answered that there was no royal road to geometry. He was therefore later 

than Plato’s group, but earlier than Eratosthenes and Archimedes, for these two men 

were contemporaries, as Eratosthenes somewhere says.” (Morrow 1970, pp.56-57) 

This is a nice extract for an activity, combining mathematics, history and language 
(for Greek students). Translating the ancient text into modern Greek, collecting 
information regarding the persons involved, studying more the historical period in 
which they lived, could be a student activity to provide material for further 
discussion in the classroom, which could lead to the following conclusion: 

We know that Ptolemy the First, a general of Alexander the Great had been the satrap 

of Egypt from 323 to 305 B.C., and its king from 304 to 283, and that Archimedes lived 

from 287 to 212 BC. Proclus cites the dialogue of Euclid with Ptolemy the First and 

informs us that he was older than Archimedes. Therefore, we can specify that the 

period in which Euclid was active is very close to 300 BC. 

This activity has interesting didactical extensions and could lead to illuminating 



 

 

 

146 

discussions on the concept of mathematical proof: The method and logical arguments 
that led, from historical sources to the above historical conclusion, can be paralleled 
to those used to justify a general mathematical result from definitions, axioms and 
previously proven theorems. Hints can also be given for the specific characteristics of 
theoretical geometry that led Ptolemy to ask Euclid for a “short” learning path to it. 
Similarly, ancient texts on Eratosthenes’ life and work could be used, with emphasis 
on the measure of the earth’s circumference (Thomaidis & Poulos 2006, p.110).  

The cross-curricular activities could be also disconnected from the teaching in a 
conventional classroom and be realized more efficiently in the context of parallel 
school events, like the formation of a group of students, who, under the teachers’ 
supervision and help, read mathematical works. For instance, the study of the book 
by Tent (2006) could have more essential pedagogical and didactical results than the 
historical note about Gauss, mentioned in § 2.  

ANCIENT GREEK MATHEMATICAL TEXTS IN THE TEACHING OF 
EUCLIDEAN GEOMETRY IN HIGH SCHOOL: A CROSS-CURRICULAR 
APPROACH 

In this section, we present some elements of an approach to integrate the HM in 
teaching mathematics, which is more demanding and deep, than the use of historical 
snippets; namely the use of original texts in carefully designed worksheets, 
implemented in cross-curricular activities (Fauvel & van Maanen 2000, ch.9).  

We developed a cross-curricular activity in a class of 50 10th-graders (15-16 year 
old students; 25 girls and 25 boys), for 10 2-hour sessions in which the teachers of 
mathematics, ancient Greek language and history were involved with alternating 
interventions. To this end excerpts from Euclid’s Elements and Proclus' Commentary, 
have been used to construct 4 worksheets that were subsequently used in the 
classroom. They concern: (a) different proofs of the equality of the angles in an 
isosceles triangle as they appear in Euclid, Proclus and Pappus; (b) the construction 
of the bisector of an angle; (c) the triangle inequality for the sides of a triangle; (d) 
the sum of the angles of a triangle.  

This activity aimed to (i) integrate original texts in teaching Euclidean Geometry 
for 16-years old students in the context of a cross-curricular approach; (ii) to create a 
new didactical environment and accordingly explore the realization of specific 
teaching aims, namely, “initiation in mathematical proof”, and “development of 
critical thinking”. More specifically, by the chosen excerpts and the questions 
addressed to the students, we sought to examine whether the students (i) share the 
criticism of the ancient philosophers against Euclid, (ii) understand the expediency of 
giving different proofs for the same geometrical proposition, particularly for obvious 
properties of geometric figures (as Proclus did while defending Euclid) and (iii) 
understand the expediency of mathematical proof in general. Under the teachers’ 
supervision, students analyzed ancient texts mathematically, linguistically and 
historically, with focus on formulating mathematical, linguistic and historical 
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questions emerging from the analysis of texts, and classroom discussion of students’ 
point of view on them. 

The worksheets were structured as follows: (a) Ancient Greek mathematical text; 
(b) Request to read and translate the text; (c) Questions on the text: 2 to 3; (d) 
Homework: 1 or 2 assignments. 

Remarks: (1) Three of the worksheets contained 2 excerpts, with this structure for 
each excerpt; the fourth included 4 excerpts. Due to lack of space, we outline this 
approach for worksheet No1. (2) The discussions in the classroom were videotaped. 
Students’ answers below refer to questions raised in the classroom (Q1-Q3 below) 
and come from the analysis of videotapes and the teachers’ hand-notes.   

Worksheet No1 

Excerpts: (i) Euclid “Elements” Book I, prop.V: equality of the basis angles of an 
isosceles triangle4. (ii) Proclus’ “Commentary”, pp. 248, 250: Alternative proofs of 
the proposition (by Proclus and Pappus)5. 

Questions: (1) Find the corresponding theorem in the geometry textbook. 

(2) Find similarities & differences between Euclid’s and the textbook’s proofs. 

Homework: (1) Translate the ancient text keeping to Euclid’s spirit as close as 
possible (e.g. avoid terminology and notation not used by Euclid). 

(2) Get information on Euclid and his Elements using encyclopedias or other 
resources. 

(3) Translate Proclus’ text to modern Greek. 

(4) Find similarities and differences among Euclid’s, Proclus’ and Pappus’ proofs. 

(5) Try to explain why all ancient proofs are different from that in the textbook6.    

Classroom discussion on the following questions: 

Q1. In your opinion, why did Euclid give a complicated proof? 

Q2. Why did the ancients avoid using the bisector of the angle at the top vertex? How 
it can be ensured that the usual construction (by ruler and compass) of the bisector of 
an angle, does indeed bisect the angle? 

Q3. Comment on Proclus’ and Pappus’ proofs.    

Some of students’ responses 

On Q1, Q2:  

(i) Euclid wanted to impress his readers, because when scientists do complicated 
things, their authority increases. 

(ii) Euclid wanted to show how to use the triangles’ equality criteria. 
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(iii) Euclid wants a theoretical, not a practical proof. Bisecting an angle is a practical 
issue and is not accurate. This construction is naïve, possible for all people, because it 
is like folding in two a piece of paper. 

(iv) Euclid could not draw the bisector accurately; he could not prove that the two 
angles are equal. The bisector concept had not been discovered yet. 

(v) Euclid wanted to exploit that particular proof in order to prove other properties 
that exist in that particular figure.  

On Q3 (for Pappus’ proof): 

(i) It looks like proofs that we gave at the elementary school. 

(ii) It is a proof appropriate for babies(!)7 

(iii) It is more difficult; it requires more thinking (it is more probable that we make a 
mistake). 

(iv) It is adapted to practice, whereas, Proclus’ and Euclid’s proofs have elements of 
logic and scientific reasoning.  

Remarks on methodological issues concerning cross-curricular activities: 
(1) A cross-curricular approach to original texts helped to face important issues 
concerning translation & interpretation and placed original texts in the appropriate 
historical context. 

(2) The original texts and the translation process led to etymological comments on the 
origin, meaning and accurateness of mathematical terminology. 

(3) The clarity and conciseness of ancient Greek mathematical language was revealed 
by connecting two apparently disjoint disciplines, namely, the study of ancient Greek 
language and mathematics.  

Some results: The above brief comments, and the analysis of the discussion in the 
classroom stimulated by the study of the other three worksheets, seems to suggest 
some interesting conclusions: 
(a) Studying original texts created a new didactical environment, in which students 
actively participated in the classroom discourse and exhibited a positive attitude 
towards the subject under consideration, which never happens in conventional 
teaching of geometry (this was particularly clear in the critical discussions on 
worksheet No3 on the triangle inequality and the Stoics’ objections reported by 
Proclus, that tried to ridicule Euclid). 

(b) Students’ commented that this activity led them to a more global understanding of 
what Euclidean geometry really is (e.g. see answers (ii) and (v) to Q2).  

(c) The variety of students’ answers and contradictions among them, that were 
produced by studying original texts reveal the number of factors that influence the 
understanding of metamathematical concepts, like the concept of proof (e.g. compare 
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answers to Q3; (i) & (ii) to (iii)). 

(d) Critical thinking not only requires the technical ability to formulate particular 
proofs, but also more general abilities to globally conceive notions, to formulate 
correct assertions etc (e.g. see answers (iii) to Q3 and (iv) to Q2). 

(e) The requirements brought up by studying original texts, link the didactical aims of 
learning particular mathematical concepts and theories, with wider pedagogical aims 
of teaching mathematics (raising metamathematical issues, access to philosophical & 
epistemological concepts, links to the historical & cultural tradition etc- e.g. see 
answers (i), (iii) and (iv) to Q2).

                                         
1 In Greece, there is only one textbook in each grade of primary or secondary education, imposed by 
state regulation as a result of a public competition for writing these textbooks. This concerns all 
subjects, not only mathematics.  
2 In Greece, grades 1 to 9 constitute compulsory education: the elementary school (grades 1-6; 
students 6-12 year-old) and the “gymnasium” (junior high-school, grades 7-9, students 13-15 year-
old). There are essentially no historical aspects in the elementary school textbooks; hence we 
restrict the discussion to junior high school.  

3 See Cuomo 200, p.245. 

4 English translation in Heath 1956, pp.251-252 
5 English translation in Morrow 1970, pp.193-195. 

6 In the textbook, the angle at the top vertex is bisected and the two resulting triangles are shown to 
be equal. 

7 In Pappus’ proof an isosceles triangle is turned and the resulting triangle is shown to be equal to 
the initial one. 
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