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THE TEACHING OF VECTORS IN MATHEMATICS AND
PHYSICS IN FRANCE DURING THE 20"" CENTURY

Ciss¢ BA* & Jean-Luc DORIER**
* Université Cheikh Anta Diop — Dakar

** Equipe DiMaGe — Université de Geneve

The work presented in this text is part of a doctorial dissertation in mathematics
education (Ba 2006) about the teaching and learning of vectors, translations, forces,
velocity and movement of translation in mathematics and physics. Here, we present
the evolution of the teaching of vectors and vector quantities in mathematics and
physics from the end of the 19" century up to now. We analyse this evolution in the
light of the ecology of knowledge, as developed by Yves Chevallard (1994). This
helps us understand the difficulties in recent periods, in order to create a successful
interdisciplinary approach in the teaching of these notions in mathematics and
physics.

INTRODUCTION

Vectors emerged during the 19™ century at the border of mathematics and physics.
We will not recall here their historical evolution (see e. g¢ CROWE 1967, DORIER
1997 and 2000, FLAMENT 1997 and 2003). Our interest is clearly into the history of
their teaching in the curricula of both mathematics and physics in France since the
end of the 19™ century. Today, in France, vectors in mathematics occupy a small part
of the curriculum of geometry in secondary education (8" to 12" grades), while
vector quantities are taught in Physics in 11™ and 12" grades. Introducing an
interdisciplinary approach has been suggested in recent programs, but is yet not very
successful, as shown by our study of textbooks and teachers’ practices (BA 2006, BA
& DORIER 2007). The bad effects of partitioning in curricula between mathematics
and physics teaching has been pointed out, especially about vectors, by several
authors (see LOUNIS 1989 for a review). In this context, our aim is to understand
how such a partitioning has been made possible, in order to find a way to make the
interrelation between mathematics and physics teaching better.

The ecological approach developed by CHEVALLARD (1994), is a theoretical tool
proper to help us tackle this issue. Indeed, it allows to study the different positions
and functions of vectors and vector quantities in the moving landscape of
mathematics and physics teaching, with conditions and constraints for survival and
development. The idea is to analyse the evolution of objects of knowledge in various
(didactic) institutions like organisms in various ecosystems.



The ecologists distinguish, when referring to an organism, its habitat and its niche. To put
it in an anthropomorphic way, the habitat is, in a way, the address, the place where it
lives. The niche regroups the functions that the organism fulfils. It is, in a way, its
profession in this habitat'. (Op. cit., p. 142).

Following CHEVALLARD, ARTAUD (1997) analyses under which conditions new
objects can emerge and live in an ecosystem.

For a new object of knowledge O to emerge in a didactical ecosystem, it is necessary that
a certain milieu exists for this object, i.e. a set of known objects (in the sense that a non
problematic institutional relation exists) with which O comes in interrelation. [...] A
mathematical object cannot exist on its own; it must be able to occupy a specific position
in a mathematical organisation, that has to be brought to life. The necessity for a milieu
implies that a new mathematical organisation cannot emerge ex nihilo. It must lean on
already existing mathematical or non-mathematical organisations'. (Op. cit., p. 124).

The ecological approach consists therefore in bringing to light a network of
conditions and constraints that determines the evolution of the positions that objects
(vectors in our work) can have in the different periods corresponding to changes in
the programs. In this perspective, we have to take into account various institutions
(and their specific constraints): school in general, but also mathematicians and
physicists.

We do it chronologically from 1852 up to today, according to various phases,
corresponding to the main teaching reforms.

THE BEGINNINGS (1852-1925)

In 1852, techniques for obtaining the resultant of two forces is taught in physics in
11™ grade (age 17). There is a reference to the parallelogram of forces, but no vectors
as such, just a technique based on a geometrical pattern. The same year the term
radius vector (rayon vecteur) is used in geometry. This comes from astronomy, where
the radius vector designates the segment joining one of the foci of the ellipse
describing a planet’s trajectory to its position on the orbit. It has therefore not much
to do with what we call a vector now.

Until 1902, vector and vector quantities are absent from French secondary teaching
both in mathematics and physics. In 1902, the radius vector disappears, but the
vector, as a directed line segment appears in the program of 11" grade in mechanics
and kinematics, part of mathematics then. Meanwhile, in ot grade too, in statics and
dynamics, the scalar product is used to calculate the work done by a force. Therefore
vectors enter the curriculum in 11" grade in the habitat of what we can call
“paraphysics”, with a niche as representations of orientated quantities. This is
coherent with their origin and use in science of that time. It is also coherent with the
general aims of the 1902 reform, which promotes mathematics as the root of natural
sciences. Moreover, the 1902 reform insists on collaborations between mathematics
and physics teachers:



It would be good that [...] mathematics and physics teachers in the same school support
each other mutually. Physics teachers must always know at what stage of mathematics
knowledge are their students and conversely mathematics teachers would gain in not
ignoring some examples that they could choose, in the experimental knowledge already
acquired, in order to illustrate the theories they have explained in an abstract way.
(Introduction to Programmes du lycée, 1902, p.3)

The 1902 reform is quite ambitious and gives to the sciences and mathematics in
particular a privileged position. A result of this ambition is that the curriculum is too
important, therefore teachers complain that it is impossible to cover everything. In
1905, the ministry of education has to reduce the program. In this technical
adaptation, vectors are moved from 11" to 12" grade and enter a new habitat, since
they are now part of the geometry curriculum, where they have to be presented as
tools for physics (their niche):

In mechanics, [...] teachers must avoid any development on purely geometrical aspect; it
1s in order to suppress any such occasion, that theorems on vectors have been reduced to
a minimum and moved in the geometry curriculum, where they appear under their real
aspect. (Instruction du 27 juillet 1905 relative a I’enseignement des mathématiques, p.
676)

Vectors are therefore transported from mathematical physics into geometry, in order
to technically solve a purely didactical problem.

In 1925, without being explicitly in the program, vectors appear in the 9™ grade, as a
possible concrete representation of “algebraic numbers”, “concrete notions on
positive and negative numbers”. This is a new potential habitat in arithmetics, as
representations of one-dimensional orientated quantities (their niche). Here again, the
reasons are mostly of didactical order.

In 12" grade, the content about vectors remains more or less the same than during the
preceding period. Yet, vectors have migrated into trigonometry, for which they
facilitate the didactical presentation. In kinematics, the use of vectors to represent
velocity and acceleration is more systematic, like in mechanics, with forces. The
habitat and niche in physics are therefore reinforced. Meanwhile, a comment in the
program in 1925 is quite interesting:

In statics, the confusion that happened very often between the properties of systems of
forces and those of associated systems of vectors, will disappear because of the general
study of the latter.

Therefore the geometrical status of vector is reinforced, so is their niche in this
habitat, due to the new connection with trigonometry.

In a bit more than 20 years, fore purely didactical reasons, vectors initially hybrid
objects at the border between physics and mathematics, acquired a geometrical status
and a potential arithmetical one. Their use in physics is not anymore essential, since
they have to be introduced separately.



A SLOW EVOLUTION (1937-1967)

In 1937, the use of vectors to represent algebraic numbers in 9" grade is made
official, and the projection of parallel vectors on the same axis is suggested as a
means to illustrate the multiplication of numbers with a sign. In the same vein,
vectors are used in the presentation of homotheties. The arithmetical habitat is
therefore reinforced.

The habitat in trigonometry remains but is moved down to 11™ grade.

Habitats and niches are therefore identical. Clearly one-dimensional vectors live in
arithmetic for the 9™ grade, where multiplication by a scalar is important, while
higher dimensional vectors are introduced in the 11™ grade in trigonometry. The
habitat in physics appears later, but more systematically, as an application. No
mention of possible bridges between the different habitats is made, while difficulties
in the use of vectors in physics are noticed officially.

In 1947, there are no major changes. For the first time, vectors are used to present a
vector version of Thales’ theorem in the 9" grade, following the use of vectors for
homotheties. In the 11™ grade, vectors are now a separate chapter in geometry, no
longer part of trigonometry. The term of equipollent vector is introduced, and the link
with translation is made.

Therefore, vectors have now gained an autonomous mathematical status. The
dichotomy between arithmetics (one dimension) and geometry (higher dimension)
still exists. Yet, Thales’ theorem makes a bridge between the two habitats, and put
forward the multiplication by a scalar, which originally was not very important in the
use for physics.

In 1957, the potential bridge between the arithmetical and geometrical habitat is
made. Vectors appear in the 9™ grade, in geometry, in relation with proportional
transformations and Thales’ theorem: the arithmetic habitat has been absorbed into
geometry. In the 10™ grade, 3 dimensional directed line segments are introduced as
part of the geometry curriculum, in relation with translations and analytic geometry.
In the 11" grade, the distinction between directed line segments and free vectors is
made. Applications to geometry and kinematics are important. Barycentres also
appear for the first time and are linked to vectors. The geometric habitat is therefore
stronger and has absorbed the arithmetic habitat, which only survive in a transitory
phase in the 9" grade. In this enlarged geometric habitat, the niche is not anymore the
representation of vector quantities from physics, but more an efficient tool for solving
geometrical problems. For educational purposes, vectors have therefore become
geometrical objects. They are used to introduce analytic geometry and barycentres,
two fields of geometry that historically existed before vectors!

In physics, in 12" grade, vectors are also used in magnetism, yet mostly through
representation by coordinates. This, again, is quite ironical, compared to the historical



development, when one recalls that Maxwell’s formulae played an important role in
the history of vectors, to impose the coordinate-free notations!

MODERN MATHEMATICS (1968-1985)

In the enormous changes brought by modern mathematics, geometry teaching was to
be profoundly renewed. Vectors were introduced in 7" grade, very formally. In 9™
grade, the axiomatic structure of vector space was defined, yet limited to finite
dimensions. In his history of linear algebra, Dorier (1997 or 2000a) has shown that
the model of geometrical space, as the Euclidean three-dimensional vector space has
been promoted by Dieudonné (1964) because, in his mind, it was the best preparation
for the Hilbert and more general function spaces, which were important in the
curriculum for post graduates in mathematics. Indeed, promoters of modern
mathematics (among whom Dieudonné was one of the most radical) had a
descending view of mathematics education: students had to be trained as young as
possible to ideas that were essential to professional mathematicians. In this
perspective, introducing geometry through vectors made possible to introduce the
structure of Euclidean vector space very early. “Geometrical vectors” became then
the (quasi unique) prototype of Euclidean vector spaces. Yet, this is a reduction and a
deviation from the historical genesis.

[...] the nature of the geometrical vector [...] is the outcome of a dialectical perspective
between algebraic structure and geometric intuition. It has to be underlined here that the
expression “algebraic structure” does not mean that the geometrical vector is essentially
the emergence of the theory of vector space in geometry. Indeed, one should not be
misled by the proximity of vocabulary. The theory of vector space is by nature axiomatic,
algebraic vectors (elements of a vector space) are not constructed, they are given objects
defined only by their properties as element of a structure. Geometrical vectors on the
contrary are the result of a dynamic process of abstraction: the object is created through
an algebraic elaboration in interaction with geometric intuition. Moreover, the roles of
vector and scalar products have been essential in the genesis of geometrical vector,
whereas the linear structure put forward the multiplication by a scalar, which is not
essential with regard to geometrical vectors'. (DORIER 2000b, pp. 76-77)

A totally new mathematical organisation took place in geometry, in which vectors
were central. But the nature of vectors was also changed, they became mostly
examples of linear algebra theory. Therefore, a new niche appeared in the habitat of
geometry: preparation of students to linear algebra, which was taught from 10™ grade,
up to post-graduate level (functional analysis). Vectors were also used in Physics, but
the gap between formal objects and applications got very important and many
students had difficulties:

The coordination mathematics-physics is getting complicated: in addition to the time lag
between mathematics teaching and the needs of physics teaching there is a gap between
modern mathematics taught and applicable mathematics used in the teaching of physics.



Thus, a group will be constituted at the junction between the Laguarrigue and the
Lichnerowicz commissions®." (BELHOSTE, GISPERT & HULIN 1996, p. 112)

Research works in physics education in the seventies pointed out several difficulties
in the use of mathematics in physics, especially regarding vectors. MALGRANGE,
SALTIEL & VIENNOT (1973) for instance interviewed students entering university
and pointed out that a correct use of addition of vectors about forces or velocities was
a major problem.

However, it is well known that the reform was quickly criticised and rejected.

A reform conducted by tertiary education for its own sake and interest without any clear
vision of missions specific to secondary education, was certainly bound to fail right from
the beginning, whatever was its scientific legitimacy and its promoters’ good will.
(BELHOSTE, GISPERT & HULIN 1996, p. 37)

In the late seventies, some modifications were adopted, but it is only in the early
eighties, that a total reconstruction of the curricula took place.

THE COUNTER REFORM (1985-2002)

Following the failure of introduction of modern mathematics, in 1985 the teaching of
vector space theory disappears from secondary education, replaced by a more
concrete approach to geometry. The new program specifies: “vectors should not be
only algebraic entities; mastering their relations with configurations play an essential
role in the solving of geometric problems™.

This eludes the fact that vectors are intrinsically algebraic, and that this algebraic nature
does not refer just to the theory of vector space. Operations on geometrical vectors are
part of their constitution as objects :

- Magnitude is the basis of arithmetic since Ancient Greeks.

- Orientation on the same line is what allows considering negative entities, a

decisive step towards addition.

- Direction finally comes from the necessity of multiplication.
This last idea is the most complicated to understand. But, let us look at what is vector
multiplication. In Greek algebraic geometry, the product of two numbers (lines) is the
rectangle’s area. If one considers a parallelogram instead of a rectangle, the sine of the
angle formed by the two lines has to be taken into account in the formula for the area, 1.e.
the relative position of the two lines (the idea of negative implies to take into account the
orientation of the lines). Thus, like Grassmann (1844) underlines it, in his introduction to
the Ausdehnungslehre, the parallelogram, not the rectangle, symbolises the true concept
of multiplication, if one considers orientated entities in geometry. This brings to light the
importance of direction of lines in the construction of the product’. (DORIER 2000b, pp.
79-80).

As a consequence of the rejection of any formal viewpoint in the teaching of vectors,
these appear as tools for solving geometric problems, and eventually for physics, but
have no clear status as objects. Even the use of vectors to illustrate operation on one-
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dimensional orientated quantities has disappeared. After the rejection of modern
mathematics, the teaching of vector is lacking of theoretical reference. The model of
linear algebra has been banished but nothing came in the place. Yet, some residues
remain in few places. For instance it is still common today in textbooks for 10"
grade, to show that vectors have some properties, which are actually the axioms of
vector space (but it is not explicit).

Since the counter-reform in France, vectors are introduced in a naive way in relation
with translation. This viewpoint is not new, it has been developed for instance by
Jacques HADAMARD (1898) in his Legons de géométrie:

If by all the points of a figure, one draws equal parallel lines with the same orientation,
the end points of these lines constitutes a figure equal to the original. [...] The operation
through which one passes from the first to the second figure was given the name of
translation. One sees that a translation is determined when a line is given in magnitude,
direction and orientation such as A4 °, which goes from one point to its homologue. Thus
a translation is designated by the letter of such a line: e.g. the translation A4 *. (op. cit., p.
51).

The vector first introduced in the 8" grade, finally got introduced only in the 9™
grade. Moreover, in recent years, the content about vectors has been reduced to a
minimum. The link with physics is promoted in the programs. But, as our survey of
textbooks and teachers’ practices (BA 2007) showed, it is very limited and very often
not effective. On the other hand, vectors are used in physics to represent forces and
velocity, but physics teachers keep complaining that their students are not competent
enough with vectors.

In this last period, the habitat of vectors has been reduced to a small part in geometry.
They are presented as efficient tools to solve geometric problems and models for
forces and velocity. These niches however have difficulty in surviving. Indeed,
several research works in mathematics education (e.g. BITTAR 1998, LE THI HOAI
1997, PRESSIAT 1999) have shown the difficulty in convincing students of the
power of vectors for solving geometric problems. On the other hand, the distance and
partitioning between mathematics and physics teaching makes the interrelation
difficult. In our work, we have studied this problem not only about vectors but also
about translations and movement of translation (BA & DORIER 2007).

CONCLUSION

Despite the rejection of modern mathematics in the eighties, the model of linear
algebra, even if it has disappeared from secondary education, remains implicitly the
only algebraic model for vectors, influencing the mathematical organisation of the
teaching of vectors. In this sense, the multiplication by a scalar is overestimated
while, on the contrary, the vector product is underestimated. The axioms of vector
spaces appear implicitly, while algebraic aspects more specific to geometric vectors
are eluded, like the link with Thales’ theorem and one-dimensional orientated



quantities. The vanishing of any algebraic habitat or niche is like something missing
after the (well founded) rejection of linear algebra. A reflection on the true algebraic
nature of geometric vector and its link with geometric intuition is totally absent of the
teaching of vector, since the beginning, while it had been an essential aspect in the
genesis of vectors.

The niche “efficient tool for solving geometric problems” is quite problematic. It is
indeed difficult to find geometric problems, accessible to students in 10™ grade, in
which vectors appear really as more efficient than more basic geometric methods.
Moreover, our study of the evolution of the teaching of vectors shows that the
geometric habitat was not “natural” at the beginning. From its origin as hybrid
objects between mathematics and physics, vectors have been transformed, in a
didactical process of transposition, into geometric entities. We have shown that
several changes between 1925 and the beginning of modern mathematics have been
motivated by purely didactical (not epistemological) constraints. Ideology on
teaching and practical reasons often (if not always) have surpassed scientific motives.
The changes occurred during the reform of modern mathematics are even more
obviously driven by ideology and subject to suspicion on epistemological grounds.

The niche “tool for physics’ entities” remains throughout the century up to now. Yet,
our analysis of the evolution of the teaching of vectors shows that the gap between
habitats in mathematics and in physics has constantly grown bigger. Until the sixties,
parts of mechanics and kinematics constituted a common ground between
mathematics and physics where vectors were used. Even then, an artificial separation
was made and vectors got “rejected” in geometry. In today’s mathematics textbooks,
the examples taken from physics to illustrate the use of vectors are mostly inaccurate
and often wrong from a physicist’s viewpoint, while physics teachers refuse to do
mathematics and expect mathematical tools to be at disposal in time (BA & DORIER
in press).

For the interrelations between mathematics and physics teaching to get better,
changes in the curricula will be necessary, but it will not be sufficient. For each
subject capable of strengthening the relations between mathematics and physics, an
epistemological analysis has to be conducted in order to make the adequate changes.
Our claim is that this study must take into account the historical evolution of the
concepts at stake AND the evolution of the teaching of these concepts, with a
description of the constraints of the educational context. Such analyses must be the
bases for teaching experimented completed by didactical analysis. Finally specific
teachers’ training is necessary, in order to make the changes possible.
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GEOMETRY TEACHING IN ICELAND IN THE LATE 1800S AND
THE VAN HIELE THEORY

Kristin Bjarnadottir

University of Iceland — School of Education

The main issue of the paper is the first Icelandic textbook in geometry, published in
1889, and its declared aim to avoid formal proofs. In the late 19" century, there were
discussions in Europe about geometry instruction; if it should be taught as purely
deductive science or built on experimental and intuitive thinking. Icelandic
intellectuals stayed outside mainstreams of philosophical and didactic discussions,
while their policy was to enhance strategies to lead their country towards
independence and technical progress. In the paper these discussions are connected to
the van Hiele theory on geometric thinking.

INTRODUCTION

Iceland has a well recorded history of its educational and cultural issues since its
settlement around 900 AD. A great collection of literature of various kinds exists
from the 12™-14™ century. Among that is literature of encyclopaedic nature, which
contains some mathematics, mainly arithmetic and chronology. There is little
evidence that geometry of the Elements was ever studied in the two cathedral schools
in Iceland in the period from the 12" to the early 19™ century, while astronomical
observations and geodetic measurements were made in the 1500s, 1600s and 1700s
by local people who had studied at Northern-European universities.

Iceland became a part of the Danish Realm by the end of the 14™ century. The two
cathedral schools were united into one state school in 1802. Their goal was to prepare
their pupils for priesthood and for studies at the University of Copenhagen.

From the middle of the 19™ century there were increased demands for independence
from Denmark. Detailed proposals were written on schools for farmers and a lower
secondary school for the middle class as means towards raising educational standards
of a future independent nation. Classical geometry was to be provided for those
heading for university entrance, while practical measuring skills and geodesy were
proposed for future farmers.

As a milestone towards independence, the Icelandic parliament became a legislative
body in 1874; an event followed up with legislation in 1880 on teaching children
arithmetic and writing, which was, as reading since the 1740s, the responsibility of
the families under the supervision of the parish priests until the early 20" century.

Another milestone was a public lower secondary school, run by the state, established
in 1880 in Northern-Iceland. The school was intended for future farmers and
craftsmen, while in 1908 its final examination sufficed for entrance into the
Reykjavik School. Its syllabus thus became more theoretic with time. It remained the
only school of its kind until 1928. Several privately run lower secondary schools as
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well as technical schools were established from the 1880s with some support from the
state, increasing in number after the turn of the century.

Along with the establishment of schools, textbooks in the vernacular were written and
published. Among them was the topic of this paper, the first Icelandic textbook in
geometry, published in 1889, Flatamalsfreedi /| Plane Geometry by the Reverend
Halldor Briem, teacher at the new lower secondary school in Northern-Iceland.

GEOMETRY TEACHING IN EUROPEAN HISTORY

The study of geometry was collected into a coherent logical system by Euclid in his
Elements in 300 BC. The main goal of studying classical Euclidian geometry with its
logical deductive axiom system has been considered to train logical reasoning. The
Euclidian system provided a model for creating various axiom systems in the last half
of the 19™ century. Axioms were developed for the set of positive integers by G.
Frege and G. Peano in the 1870s, and e.g. Dedekind contributed to a precise
definition of the idea of a real number in the same period.

There were, however, several flaws in FEuclid’s system, e.g. an assumption
concerning continuity, not explicitly mentioned. D. Hilbert published his Grundlagen
der Geometrie in 1899, where he defined five sets of axioms, a complete set, from
which Euclidian geometry could be derived. Hilbert’s set of axioms contains two
which concern the basic idea of continuity, where the tacit assumption of Euclid is
made explicit (Katz, 1993: 718-721).

THEORIES ON GEOMETRY LEARNING

According to the theory of Pierre and Dina van Hiele, developed in the late 1950s,
pupils progress through levels of thought in geometry. Their model provides a
framework for understanding geometric thinking (Clements, 2003: 152—154). The
theory is based on several assumptions; that learning is a discontinuous process
characterized by qualitatively different levels of thinking, that the levels are
sequential, invariant, and hierarchical, not dependent of age, that concepts, implicitly
understood at one level, become explicitly understood at the next level, and that each
level has its own language and way of thinking.

In the van Hiele model, Level I is the visual level in which pupils can recognize
shapes as wholes and cannot form mental images of them. At level 2, the descriptive,
analytic level, pupils recognize and characterize shapes by their properties. At level 3,
the abstract/relational level, students can form abstract definitions, distinguish
between necessary and sufficient sets of conditions for a concept, and understand,
and sometimes even provide logical arguments in the geometric domain, whereas at
level 4, students can establish theorems within an axiomatic system.

According to Clements (2003), research generally supports that the van Hiele levels
are useful in describing pupil’s geometric concept development, even if the levels are
too broad for some tastes. The van Hiele levels may e.g. not be discrete. Pupils
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appear to show signs of thinking at more than one level in the same or different tasks
in different contexts. They possess and develop competences and knowledge at
several levels simultaneously, although one level of thinking may predominate.

GEOMETRY IN EUROPEAN SCHOOLS

The Euclidian axiomatic deductive presentation of geometry was a norm for the
subject in early modern age secondary schools. When people began to talk about
geometry teaching, based on observation and experiments, by the end of the 18"
century in Denmark the idea was hard to fight for (Hansen, 2002: 106).

As a germ to a new era, the proponent of the Enlightenment movement, Rousseau,
wrote in his Emile in 1762: “I have said that geometry is not within the reach of
children. But it is our fault. We are not aware that their method 1s not ours, and that
what becomes for us the art of reasoning, for them ought to be only the art of seeing”
(Rousseau, 1979:145). There is a consonance in this quote to the van Hiele theory;
the children are still at level I, the visual level.

During the 19" century and the early 20" century the prevailing view of geometry
instruction and general education in England was challenged (Prytz, 2007: p. 41-42).
Mathematicians like Bertrand Russell resumed the critique regarding tacit
assumptions and lack of rigor in Euclid’s Elements. Educators argued that geometry
could be made more palatable to pupils, and others demanded that mathematics
instruction should be adapted to practical matters. The last group of critics was led by
a mathematics teacher, John Perry, at a technical college where the final
examinations had to adhere to the standards of pure mathematics. His efforts were
successful and led to changes of regulations in the early 20" century. During the 20"
century both practical geometry and the experimental approach were indeed picked
up at secondary schools and colleges in England.

As early as 1802 the German philosopher and pedagogue Herbart (1776—1841)
argued that imaginary skills are important in connection to geometry instruction. The
textbook writers Treutlein (1845-1912) in Germany and Godfrey (1876-1924) in
England were influenced by him. Both of them underscored the importance of
developing intuitive thinking in connection to mathematics instruction (Prytz, 2007:
p. 43—44). At the beginning of the 20™ century the German educational system went
through important changes, where e.g. the increasing importance of technology
undermined the position of pure mathematics. One of the leading actors was the
German mathematician Felix Klein (1849—-1925) (Prytz, 2007: p. 40).

Thus experimental and intuitive approaches to geometry instruction in secondary
schools were discussed in Germany and England by the turn of the 20™ century,
where influential opinion makers were Perry and Klein. In both these countries,
official reports occurred that stressed the importance of such teaching methods and
they were included in the first geometry courses at the secondary schools (Prytz,
2007: p. 43).
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THE POLITICS OF MATHEMATICS EDUCATION IN ICELAND

In the first half of the 19™ century, in 1822-1862, the secondary Reykjavik School,
the only school of its kind in Iceland, was served by mathematician B. Gunnlaugsson.
Gunnlaugsson had won a gold medal at the University of Copenhagen and made the
great feat on his own to measure Iceland geodetically in twelve summers to create the
outlines of the country’s modern map. During Gunnlaugsson’s period, classical
geometry teaching was developed at the school according to new requirements of the
University of Copenhagen of 1818. Gunnlaugsson had to use Danish textbooks but in
order to enhance the pupils’ motivation he gave them geodesy problems
(Bjarnadéttir, 2006: 90-93; National archives, Bps. C. VII, 3a).

Secondary schools in Denmark were split into a language-history stream and a
mathematics-science stream in 1871. The Reykjavik School adhered to the same law,
but with own regulations. It was too small to be divided into two streams so after
some lobbyism and compromises the school became a language stream in 1877 and
mathematics was only taught for four years out of its six-year programme
(Bjarnadottir, 2006: 112—118). This decision caused some dispute and a conflict for
several years. University student F. Jonsson, later professor in philology at the
University of Copenhagen, wrote in 1883, criticizing the school and its regulations:

... to teach mathematics without practical exercises ... is ... as useless as it can possibly
be, ... the worst has been the lack of written exercises; ... all deeper understanding has
been missing, all practical use has been excluded ... the new regulations have 1) snapped
trigonometry away, 2) prescribed that mathematics is only to be taught during the 4 first
years (previously all) and thereby dropped for the graduation examination, and 3)
geometry shall commence already in the lowest class;

these three items are as I conceive them equally many blunders; ...to skip the
trigonometry is to skip what is the most useful and interesting in the whole bulk of
mathematics ... that the [geometry] study is to commence in the first grade; in order to
grasp it, more understanding, more independent thought is needed than those in the first
grade master; [I] tutored two boys in geometry and both of them were not dumb and not
merely children, and for both of them it was very difficult to understand even the
simplest items; but the reason was that they did neither have the education nor the
maturity of thought needed to study such things, which is very natural (Jonsson, 1883:
115-116).!

The pupils of the Reykjavik School were sons of farmers, priests and other officials.
The priests also made their living from farming as did county magistrates so the
majority of the pupils came from farming communities. There were no primary
schools in rural areas. The novices came to school prepared by priests in Latin,
Danish and basic arithmetic. Presumably most of them had never met geometrical
concepts. For example, land properties were not measured in square units, but were
from medieval times valued according to how much livestock they could carry.
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Considering the van Hiele theory, one may understand that the pupils did not possess
‘the maturity of thought’ needed to study deductive geometry as presented in the
Danish author Jul. Petersen’s system of textbooks, written in the period 1863—1878
and used at the Reykjavik School at the time Jonsson is referring to. The pupils were
expected to jump to level 3 of geometric thinking without any preparatory training at
lower levels. In Petersen’s necrology it said:

First around the turn of the century people began to realize that the advantages of these
textbooks were more obvious for the teachers than for the pupils ... the great conciseness
and the left-out steps in thinking did not quite suit children (Hansen, 2002: p. 51).2

Petersen’s textbook on introduction to geometry, remained as an introductory course
at the school for close to hundred years, to be discarded in the late 1960s
(Bjarnadéttir, 2006: 320), and was to disturb the life of many a young pupil.

GEOMETRY BY HALLDOR BRIEM

The Reverend Halldor Briem (1852-1919), published his Flatamalsfrceedi / Plane
Geometry in 1889. Briem was admitted to Reykjavik School in 1865 to graduate in
1871. He enjoyed there the controversial mathematics teaching described by Jonsson
above. Briem was educated as priest in Iceland, but stayed during 1876—1881 in the
Icelandic community in Manitoba and Winnipeg in Canada where he was editor of an
Icelandic journal. He may have become acquainted there with school mathematics,
but record of that is not available. H. Briem wrote textbooks on geometry, English,
Nordic mythology, Icelandic grammar and Icelandic history, in addition to theatre
plays and various translations into Icelandic, among them of the story of Robin Hood.

In the foreword to the Plane Geometry, Briem declared his policy:

... no textbook in geometry in Icelandic has been available. I have therefore had to make
use of foreign textbooks ... Other schools for the public in this country have not been in
better situation in this respect and this shortage is the more severe, as knowledge of
mensuration is completely indispensible in various daily tasks of farmers, carpenters and
others, besides that it is an important item in general education ...

In composing it, my goal has mainly concerned what is the most important in general
industrial activity and therefore I have emphasized the main items concerning that as
much as possible, and omitted other items that are less important to the production. The
arrangement of the content is therefore different from what is customary in this kind of
textbooks, where every sentence is supported by scientific proofs, but according to my
policy that did not apply here.

... [Reykjavik School] teacher Bjorn Jonsson has read the manuscript of the book, and
offered me many good hints ... (Briem, 1889: iii-iv).’

H. Briem’s brother, the Reverend E. Briem was also a textbook writer. His Arithmetic
(1869) was a dominating textbook for adolescents, also at the Reykjavik School, in
1869—1910s. It is very unlikely that the brothers were involved in didactic discussions
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known in Europe about mathematics as a discipline exclusively to train the mind. The
brothers declared as their first aim to meet the immediate needs of young people for
practical knowledge. One might even conjecture that the authors thought that
bothering about proving self-evident facts was an intellectual luxury (or adversity)
that educationally-deprived youth were not to be disturbed with.

The introduction of H. Briem’s Plane Geometry is devoted to basic assumptions,
such as of a space, a body, a plane or surface, a line and a point, in this order. The
body is not composed of planes, the author states, and the plane not of lines as the
planes have no thickness. The line has no width and it is not composed of points.
However if one thinks of a point moving from one spot to another its track is a line. If
a line moves in a direction perpendicular to itself, its track will be a plane and if a
plane moves in a direction perpendicular to itself, its track will be a solid.

H. Briem seems to have thought of points as discrete objects and a line as a
continuous track, which he could not think of as made up of points. Briem had little
opportunity to become acquainted with modern ideas of real analysis or the works of
Dedekind or Cantor in the 1870s, and the work of Hilbert on new sets of axioms for
Euclidian geometry, where the ambiguity about continuity was amended, had not yet
appeared. But a priest teaching mathematics to adolescents on the outskirts of Europe
felt a need to philosophize on his own about the nature of lines and planes and their
relations to points.

Briem continued with definitions; of parallel lines, an angle, of plane figures, such as
triangles, various quadrilaterals, polygons the circle and the ellipse, various
quadrilaterals and finally of similarity and congruence. The names of the shapes are
in Icelandic with Latin in parentheses. As this was the first book on geometry ever
written in Icelandic, remembering it all must have been a difficult task. A score of
exercises follow the definitions. Attached to the exercises are answers to them and
explanations. This was necessary as lower secondary schools were scarce and the
textbook was to serve for home studies as well.

In connection to the definition of a triangle, its attributes are also investigated. It says:

All the angles in a triangle are 180° in total. In the triangle ABC (diagram 19) CB is
perpendicular to AB, therefore the angle B = 1R [R a right angle], furthermore CB is
equal to AB; by drawing the triangle ADC equally large and similar to the triangle ABC
[congruence had not yet been defined], one may see that x and y each are the half of a
right angle, therefore the sum of the angles in the triangle is 2R. The same concerns all
triangles, as the larger or smaller one of the angles is, the others (one of them or both)
become smaller or larger. In a triangle therefore only one angle can be right or obtuse
(Briem, 1889: 14).*

In this text a diagram is referred to, but because of a high printing -~
cost all diagrams are printed together as an attachment at the back
of the book. Clearly the author appeals to the intuition of the reader
to see that the angles x and CAD are complementary, as well as y
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and ACD. Furthermore, the triangle ABC is a special case of an isosceles right
triangle, and the reader is invited to take its attributes as universal. The author had
presented parallel lines and their angles to a transversal line and so was able to
present the regular proof of the sum of angles in a triangle but obviously he preferred
to do it this way.

The common reader, the future farmer or carpenter, may not have been expected to
need more ‘scientific’ proofs, the fact that the sum of the angles in the triangle ABC
1s two right angles, is more or less obvious from the diagram, but more credulousness
is needed for believing that it applies to all triangles. Schools, through the centuries,
have expected their pupils to believe what is stated in textbooks. This is not much
different from any other point of view than that mathematics studies are expected to
foster critical thinking among their students.

In continuation, a square root is introduced as are common measuring units, which
were quite complicated before the introduction of the
metric system in 1907. The following chapter concerns
B/ {/ areas of parallelograms, squares, rhombi and triangles with
plausible explanation aided by the diagrams at the back of
the book. The areas of a trapezoid and polygons are
deduced from the area of a triangle. Heron’s rule is
introduced without a proof or explanation, as is the
Pythagorean Theorem whose proof is stated to be too
difficult for the readers. A diagram of the 3 — 4 — 5 triangle
(diagram 51) 1s presented as an illustration of the rule.

4

In a circle the perimeter is stated to be 3¢ times the radius, while later this and other

values for & are said to be approximations to the true value which may be reached as
close to as desired. The circle is thought to be composed of many small triangles,
whose top-angles meet at the centre of the circle, from which the area of a circle was
deduced. This continues with areas of sectors and annuli and finally of an ellipse.

A chapter is devoted to proportions, which probably was difficult as the pupils may
not have had much experience in solving equations. When coming to proportions in
the right triangle, the author reveals the algebraic proof
of the Pythagorean Theorem. v ‘f’ 5 sy 2
In the final chapter, the author introduced ¥ - “
constructions; to bisect a segment, to divide a segment
into any number of segments, to construct a right
angle, to double the area of a square and a circle and to
transform a rectangle to a square with the same area.
This is illustrated in diagram 45 where the dimensions
of the rectangle are AD and DB and the side of the
square is CD. This is a consequence of proportions in
the right triangle already introduced, and the author
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refers to it through diagrams. Earlier, the necessary prerequisite, that a periphery
angle is half the centre angle of the same arc, had been illustrated for a right
periphery angle, sufficient for this construction.

All things considered, the text, after the initial introduction of concepts, is readable,
although concise, with sensible explanations of most of the formulas with the aid of
diagrams, which regrettably could not be attached to the text in concern. The
exercises were mainly computations of sizes of angles, lengths of sides in right
triangles and various area computations, but no constructions. One may suggest that
the level of the book was closer to van Hiele level 2 than e.g. Petersen’s textbook, but
was certainly not level 1.

However, even if one can claim that Briem’s geometry was based on observations of
his diagrams, it can hardly be maintained that they concerned the pupils’ real world.
The problems seldom had content, and if so they were synthetic in the sense that they
asked to find areas that few would want to know. It was not customary to compute
the area of land except to estimate the time needed to mow it, and few had reasons to
find the area of an ellipse-shaped dining table. The author was indeed faithful to the
Euclidian content but was unafraid to simplify proofs and appeal to intuition.

The author of Plane Geometry taught mathematics, Danish, singing and physical
education in the state-run lower secondary school in Northern-Iceland. The Plane
Geometry was used in that school and possibly in some other schools, but not at the
Reykjavik School which adhered to regulations for Danish Latin schools. However,
Briem’s second geometry textbook on volumes (Briem, 1892), which was not as
sensitive to rigor, was used there for some number of years.

In 1904 a learned mathematician, Dr. O. Danielsson graduated from Copenhagen
University and came up to Iceland to teach. He completed his doctoral degree in 1909
with geometry as his special field. Until his time there was no mathematician to
dispute geometry instruction with. Dr. Danielsson tried to use Briem’s Plane
Geometry in teacher training for one year, but gave up, presumable due to lack of
rigor. He turned to foreign textbooks until he published his own, where he for
example used the definitions of parallel lines and their angles to a transversal line to
prove that the sum of the angles in a triangle is 180°. He also proved the theorem of
Pythagoras with the aid of geometric figures (Danielsson, 1914).

DISCUSSION

Many pedagogues emphasize that learning is dependent on a cultural environment
(see e.g. D’Ambrosio, 2001). It is notable that through the history of education in
Iceland, trigonometry and geodesy stand out as being considered interesting and
useful subjects, while no trace is found of rigid Euclidian geometry for any other
purpose than fulfilling the requirements of the University of Copenhagen.

H. Briem belonged to a generation of intellectuals who were much aware of the low
status of education in Iceland and who participated in the struggle for independence
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in order to be able to form own educational policy. Briem was one of two teachers
who were appointed to a new lower secondary school, to whom people had great
expectations that it would raise the level of education of the general public. The
school was not restricted by any regulations on the mathematics content so Briem had
freedom to form the mathematics instruction as he thought suitable. His efforts to
avoid ‘scientific proofs’ reminds of the efforts of Perry in England to release the
technical schools from the standards of pure mathematics.

Briem’s textbook may be considered as a reaction to geometry instruction as it was
performed in the Reykjavik School in the 1870s, without consideration to the young
pupils’ level of thinking and without any reference to their environment or to the
Icelandic culture. It is though questionable to which degree Briem succeeded in
connecting the content to the environment and Icelandic reality.

One can hardly claim either that Briem succeeded entirely in meeting the pupils’
level of geometric thinking, but he did avoid bothering them with proving what they
might have thought ‘obvious facts’. His collection of exercises did not contain any
pure deduction, but consisted of fairly approachable numerical exercises.

These were times of rapid changes away from a stagnant agricultural society.
Craftsmen were a rising class in the 1890s and the textbook was intended to introduce
them to basic facts of geometry, useful in their trade. It must have been useful, even if
it also contained some irrelevant topics, when taken into account that no other text on
the subject was available in their own language. Briem made a great effort to
transform concepts from foreign languages into Icelandic, which had no tradition of
geometry.

Briem’s textbook was indeed an ambitious textbook for its time and no textbook,
written in Icelandic, intended for the non-college-bound general public and reaching
that level of complexity, has been published since in Iceland.
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' ... ad kenna sterdfredi an verklegra afinga ... er ... svo gagnslaust sem frekast ma

verda, ... pad sem vestu hefur gegnt er skortur 4 skriflegum @fingum ... alla dypri eigna
skilning hefur vantad ... nyja reglugerdin hefur 1) kippt burtu prihyrningafraedi 2) lagt
pad fyrir ad sterdafraedi sje adeins kennd 4 fyrstu arin (adur 6ll) og par med slept til
burtfararprofs og 3) lagt pad til ad rammalsfraedi skuli kennd strax i nedsta bekk;

petta prennt er ni ad minni hyggju jatnmorg axarskoft; ... ad sleppa prihyrningafraedinni
er a0 sleppa sem pvi einna nytsamlegast er og skemmtilegast i allri sterdafraedinni ... ad
namid skyldi byrja 1 1. bekk; til pess ad nema hana parf meiri skilning, meiri sjalfsteda
hugsun, heldur en peir hafa almennt, sem eru i nedsta bekk; [eg veitti] tilsogn tveimur
piltum i rammalsfraedi og voru peir badir 6heimskir og ekki hrein born ad aldri, og attu
peir mjog erfitt med ad skilja hid allra einfaldasta; en pad kom til af pvi ad peir h6fou eigi
pa menntun nje hugsanaproska, sem parf til ad lera slikt, og er pad fulledlilegt.

? Forst henimod aarhundredeskiftet begyndte man at faa Gjet op for at det fortrinlige ved
disse Lzreboger var mere indlysende for Larerne end for Eleverne ... den store
Kortfattethed og de udeladte mellemled 1 Tankegangen ikke egnede sig rigtigt for bern.

3 .. ekki hefur verid til 4 islensku nein kennslubok i rammalsfraedi. Jeg hef pvi ordid ad

notast vid utlendar kennslubaekur ... Adrir alpyduskolar hjer 4 landi eru ekki betur staddir
i pessu tilliti, og er pessi skortur pvi tilfinnanlegri, sem pekking & melingum er alveg
omissandi 1 ymsum daglegum storfum fyrir baendur, smidi og fleiri, auk pess sem hun er
mjog mikilsvert atridi almennrar menntunar. ...

Vi0 samningu hennar hef ég einkum haft fyrir augum, hvad pydingarmest veri i almennu starfslifi,
og dregid pvi mest fram pau adalatridi, sem par ad lita, en sleppt hinu, sem hefur minni pydingu i
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starfslifi manna. Nidurskipun efnisins er pvi nokkud 4 adra leid, en vant er ad hafa i pess konar
kennslubokum, par sem hver setning er rakin med visindalegum sonnunum, en samkvamt stefnu
minni atti pad ekki vid hjer.

... kennari Bjorn Jensson hefur lesid yfir handritio af bokinni, og gefid mjer ymsar gédar bendingar

* Oll hornin i prihyrningi eru samtals 180°.  prihyrningnum ABC (19. mynd) er CB
160rjett a AB, pess vegna er hornid B = 1R, ennfremur er CB jafnstor AB; med pvi ad
draga prihyrninginn ADC jafnstorarn og eins lagadan og prihyrninginn ABC, ma sj4, ad x
og y eru hvort um sig helmingur af rjettu horni, fyrir pvi eru 61l hornin i prihyrningnum
ABC samtals 2R. Sama & sjer stad i 6llum prihyrningum, pvi eftir pvi sem eitt horn er
steerra eda minna, verda hin, (annad eda badi) minni eda staerri. I prihyrningi geta pvi
einungis eitt horn verid rjett eda sljovt.
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INTRODUCING THE NORMAL DISTRIBUTION BY
FOLLOWING A TEACHING APPROACH INSPIRED BY
HISTORY: AN EXAMPLE FOR CLASSROOM
IMPLEMENTATION IN ENGINEERING EDUCATION

Monica 13
Marta Ginovart
Department of Applied Mathematics 111
Technical University of Catalonia, SPAIN

Probability and random variables turn out to be an obstacle in the teaching-learning
process, partly due to the conceptual difficulties inherent in the topic. To help
students to get over this drawback, a unit on “Probability and Random Variables”
was designed following the guidelines of the European Higher Education Area and
subsequently put into practice at an engineering school. This paper focuses on the
design, implementation and assessment of a specific activity of this unit concerning
the introduction of the normal probability curve from a teaching-learning approach
inspired by history. To this purpose a historical module on the normal curve
elaborated by Katz and Michalowicz (2005) was adapted to develop different aspects
of the topic.

Keywords: probability, normal distribution, European Higher Education Area,
teaching-learning materials on history of mathematics.

INTRODUCTION

Teaching probability and random variables turn out to be essential for the introducing
of statistical inference in any undergraduate course in basic statistics. Statistics is one
of the compulsory undergraduate subjects included in the syllabus of any engineering
school. This subject, as developed at the School of Agricultural Engineering of
Barcelona (ESAB) of the Technical University of Catalonia (Spain), primarily
encompasses Data Analysis and Basic Statistical Inference. We believe that the very
nature of the subject calls for special consideration in the teaching of the subject,
especially with regard to the new European Higher Education Area (EHEA). Besides,
the essentially biological profile of the ESAB seems to weaken interest in the
mathematical domains.

From our experience in teaching statistics at different engineering schools, we are
well aware that probability and random variables represent a rather overwhelming
obstacle for students, due to the conceptual difficulties inherent in the topic. To help
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students get over this drawback, a unit on “Probability and Random Variables” was
designed following the guidelines of the EHEA. Subsequently, this unit was put into
practice at the ESAB. Throughout the module, the teaching-learning process was
assessed using several evaluation techniques so as to analyse the learning outcome
achieved (Blanco & Ginovart, 2008). This paper focuses on the design,
implementation and assessment of a specific activity of this unit concerning the
introduction of the normal probability curve and some related aspects from a
historical dimension.

Mathematical and statistical topics have been traditionally taught in a deductively
oriented manner, presented as a cumulative set of “polished” products. Through a
collection of axioms, theorems and proofs, the student is asked to become acquainted
with and competent in handling the symbols and the logical syntax of theories,
logical clarity being sufficient for the understanding of the subject. As a result, the
traditional teaching of mathematics tends to overlook the mistakes made, the doubts
and misconceptions raised when doing mathematics, detaching problems from their
context of origin. However, since the construction of meaning is only fulfilled by
linking old and new knowledge, the learning of mathematics, in general, and
statistics, in particular, lies in the understanding of the motivations for problems and
questions. In this respect, integrating the history of mathematics in education
represents a means to reflect on the immediate needs of society from which the
mathematical problems emerged, providing insights into the process of constructing
mathematics (Tzanakis & Arcavi, 2000; Swetz et al., 1995).

How to introduce a historical dimension in our unit on probability and random
variables turned out to be a challenge to our “standard” teaching activity, all the more
so because first we had to determine which role history would play in the unit. Of the
three different ways suggested by Tzanakis & Arcavi (2000) to integrate history in
the learning of mathematics, the one that seemed to serve our purpose best was to
follow a teaching-learning approach inspired by history. In the context of this paper
history was integrated implicitly, since the main aim was to understand mathematics
(statistics, in particular) in its modern form, bearing in mind, throughout the teaching
process, those “concepts, methods and notations that appear later than the topic under
consideration” (Tzanakis & Arcavi, 2000, p. 210). Accordingly, after having selected
a historical module on the normal curve elaborated by Katz and Michalowicz (2005,
pp. 40-57), we adapted it to develop different aspects of the topic. The aims of the
activity were to:

Aim 1.- Show motivation for the topic.

Aim 2.- Show interrelation between mathematical domains, on the one hand, and
mathematical and non-mathematical domains, on the other.

Aim 3.- Compare modern “polished” results with earlier results.
Aim 4.- Produce a source of problems not artificially designed for the purpose.

Aim 5.- Develop “personal” skills in a broader educational sense.
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These aims are explicitly connected with the ones described by Tzanakis & Arcavi
(2000, §§7.2. (a) and 7.2. (cl), pp. 204-206).

THE NORMAL DISTRIBUTION: AN INTRODUCTION INSPIRED BY
HISTORY

Right at the beginning of the course our students are informed about the specified
learning outcomes, classified according to Bloom’s taxonomy (Bloom, 1956) into:
Knowledge, Comprehension and Application. The learning outcomes regarding the
normal distribution have been articulated as follows:

Table 1. Learning outcomes regarding the normal distribution.

After attending the course the student will be able to:

a) Define and recognize the normal (or Gaussian) distribution, as | [Knowledge]
well as the standard normal distribution.

b) Convert an arbitrary normal distribution to a standard normal | [Comprehension]
distribution.

c¢) Calculate probabilities of events when a normal distribution is | [Comprehension]
involved, using the table of the standard normal distribution.

d) Describe the empirical rule 68-95-99.7. [Comprehension]

e) Apply the rule 68-95-99.7 to assess whether a data set is normally | [Application]
(or approximately normally) distributed.

f) Estimate the approximation of the normal distribution to the | [Application]
binomial distribution.

To adapt the historical module it was first necessary to frame the activity within well-
defined boundaries (Katz & Michalowicz, 2005). Therefore, we started selecting and
later reflecting on some questions suggested by Pengelley (2002) for assessing
historical material: (a) What is the purpose of studying the material? (b) How does it
fit in with the curriculum? (c) Are there appropriate exercises, with an appropriate
difficulty level and well chosen to demonstrate concepts? (d) Will it motivate
students? (e) Will it help with something students have trouble with? Since the
activity described in this paper was directed towards the learning outcomes
mentioned above (see Table 1), question (b) was explicitly involved.

To show the original motivation for the topic of the normal distribution, the activity
emphasized interrelation between statistics and health and social sciences, hence
covering Aims 1, 2 and 4. Although the topic had already been introduced in the
classroom, the teaching-learning process was able to benefit from the study of non-
artificially designed problems. From Katz’s module we elaborated the material for
the activity combining information about the historical development of the normal
curve with some ‘“‘appropriate” questions. There were no accompanying answer
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sheets as the activity was designed to be worked out in a two-hour computer lab
session, individually or in pairs. Most of the students worked individually, whereas
only few computers were shared by two students working together. The teacher acted
as a consultant during the session. Students managed the time given over to every
section of the activity themselves, according to their individual needs and skills. If
they could not accomplish their work in the computer lab, they had the possibility to
do it as homework. It is worth pointing out that the questions were chosen not only to
assess understanding of the information provided, but also to bring out the connection
with other mathematical domains. Hence, students were asked to prove expressions
and formulae, to use a spreadsheet to carry out elementary probability calculations
and to represent data, and to investigate supplementary aspects regarding the contents
of the activity. All these aspects were planned in order to cover Aims 3 and 5.

In connection with question (a) stated above, this activity attempts to introduce the
normal probability distribution in its original context, and to help students to get
acquainted with basic calculations involving the normal curve. The first section of the
activity shows how De Moivre (1667-1754) obtained his discovery of the empirical
rule 68-95-99.7. The second section gathers the discussion on the error curve in
which Laplace (1749-1827) and Gauss (1777-1855) were involved. How Quetelet
(1796-1874) calculated the table of the normal distribution from the approximation of
the normal distribution by the binomial distribution is the target of the third section.
To close the activity, the fourth section is centered on the first uses of the normal
distribution in the real world, namely: 1) analysis of the chest circumference of 5732
Scottish soldiers; i1) analysis of the heights of French conscripts to assess the
normality of the distribution, revealing a significant figure of men who illegally
avoided recruitment.

We interspersed the text with seven leading questions related to the topics discussed,
given at strategically points during the activity, and not on a separate sheet at the end.
Questions 1, 4, 6 and 7 were directly inspired by the ones suggested by Katz and
Michalowicz (2005) on pages 46, 55, 56 and 57, respectively. The rest were stated by
us, to ensure that a particular point was fully understood. The questions were
conveniently placed after a specific topic or a related result. The following
paragraphs briefly describe each question, drawing attention to the educational aims
served by each one.

Question I: In an experiment in which 100 fair coins are flipped, about how many
heads would you expect to see? What is the corresponding standard deviation? Find
the limits (lower and upper) for the number of heads we would get 68%, 95% and
99.7% of the times.

This first question deals with direct manipulation of a binomial distribution, followed
by a first encounter with the connection between the normal and the binomial
distributions. This was intended to help students to “warm up” by stating a link
between the activity and a topic they had already learned in the classroom, thus
relating to Aim 1.
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Questions 2 through 4 are connected with Quetelet’s calculation of a symmetric
binomial distribution. He considered the experiment of drawing 999 balls from an urn
containing a large number of balls, half of which were white, and half black.

Question 2: Prove Quetelet’s shortened procedure for the calculation of relative

probabilities: P(X =n+1)= 299 -n *P(X =n), where P(X =n)represents the

probability of drawing n black balls from the urn. Setting the value of P(X =500) to
be 1, calculate the relative probabilities P(X =501) and P(X =502).

Students had to deduce this recursive formula from the probability function of the
binomial distribution. This question was inserted to show the interrelation between
mathematical domains, namely, probability and recursive proofs (Aim 2). In this case
the interest lies in how to evaluate mathematical arguments and proofs, and to select
and use diverse types of reasoning and methods of proof as appropriate (Ellington,
1998). Given that students often meet difficulties in proving recursive formulae, this
exercise seems to be consistent with questions (c) and (e) suggested above.

Question 3: Using an Excel worksheet recalculate column A of Quetelet’s table for
the values 500 to 579 and graph the corresponding curve.

To get a deeper knowledge of the binomial-normal link, students were here asked to
use a spreadsheet, in particular, the spreadsheet program Microsoft Excel. Since the
activity was developed in the context of computer practicals, students had computers
at their disposal. The computer practicals offer students the possibility to be actively
engaged in the learning process, as well as to apply the concepts learnt to the
prospective working practice. Since this topic turns out to be a usual source of
difficulty, this exercise connects again with question (e). Besides, it helps not only to
compare modern results with earlier ones, but also to develop “personal” skills such
as how to manipulate a spreadsheet. Therefore, this exercise focuses on Aims 3 and 5.

Question 4: A discrete variable can be approximated by a continuous variable
considering the following estimation:

P(x = k)discrete = P(k -05=<x<k+ 0'5)cantinu0us .
For instance, P(x = 500)p;,0miat = P(499.5 = x =500.5)

normal *

Using this information, recalculate the first four values in column A using a modern
table of the normal distribution.

It can be assumed that the results of drawing balls out of the urn are normally
distributed with mean of the number of black balls equal to 500 and standard

1
deviation equal to 5\/999 ~15.8. Compare these results with Quetelet’s binomial
table.
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Understanding why we do things the way we do, and how mathematical concepts,
terms and symbols arose, plays a relevant role in grasping the topic (Ellington, 1998).
This question allowed the students to compare a modern table of the normal curve
with the earliest table. Thus Aim 3 is again involved in the proposed activity.

Finally, Questions 5, 6 and 7 concern some real world applications of the normal
distribution.

Question 5: Read carefully Quetelet’s procedure for determining whether the chest
circumferences of the Scottish soldiers were normally distributed. Write down those
points you do not understand completely.

Question 6: From the results in the example of the heights of French conscripts,
discuss how Quetelet concluded there had been a fraud.

From the reading and through understanding of the example on the chest
circumferences (Question 5) students were to draw conclusions in the case of the
heights of French conscripts (Question 6). However, as we will see in the following
section, since Quetelet’s procedure proved to be difficult to understand, only a few
students managed to answer Question 6 correctly.

Questions 4, 5 and 6 contribute to Aim 3 in that they help to compare historical
results with modern “polished” ones. Likewise, Aim 4 could be achieved, since these
questions convey the idea that probabilistic tools represent a means to solve real-
world problems, rather than just artificial designed exercises, framed in a theoretical
context. By and large, this set of questions also fosters the practice of reading
comprehension skills (Aim 5).

Question 7: On the Internet, browse for the information on Galton’s machine. What
was the relationship between the inventor Francis Galton (1822-1911) and Charles
Darwin (1809-1882)?

The intend of this last question was to help develop some “personal” skills, in a
broader educational sense, such as reading, summarizing, writing and documenting
(Aim 5). Additionally, it was interesting to point out the interrelation between
mathematical and non-mathematical domains, namely, between statistics and the
theory of evolution put forward by Darwin (Aim 2). A fundamental part of this
question involves the writing component and documenting. The incorporation of a
writing component in statistics courses has been encouraged in recent years by
Radke-Sharpe (1991) and Garfield (1994). Writing helps students to think about the
assumptions behind statistical, graphical or instrumental procedures, to formulate
these assumptions verbally, and to critically examine the suitability of a particular
procedure based on its assumptions. The inclusion of documenting (i.e. browsing the
Internet) facilitates student reading, understanding and summarizing from different
sources. In short, reading, writing and documenting are tools that will serve students
well in their future scientific or academic writing. Encouraging students to put
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concepts such as these into words will strengthen their understanding of those
concepts.

ASSESSMENT OF THE TEACHING-LEARNING PROCESS

Among the questions mentioned above for assessing historical material, Pengelley
(2002) suggests considering whether it will motivate students (question (d)). Though
not the only source of feedback, student ratings provide an excellent guide for
designing the teaching-learning process and, in particular, for assessing their
motivation. Therefore, at the end of the activity students were asked to rate the
activity thus:

(1) Very good, (2) Good, (3) Satisfactory, (4) Poor, and (5) Very poor.

Figure 1 shows the results of this survey. Of the 60 students who took part in the
activity, half of them regarded it positively (22 satisfactory, 6 good, 1 very good),
whereas the other half rated it as poor.

35
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n20
445
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5
]

Very good Good Satisfactory Poor Very poor

Figure 1. Student ratings on the activity.

Another aspect suggested by Pengelley (2002) for assessing historical material
concerned the suitability of the degree of difficulty (question (c)). To determine
whether the activity was appropriately difficult, we analysed in detail a random
sample of size 20 drawn from the students who had handed in their answers. Every
question (except Question 5) was marked with either Non-Answered, Poor, Fair or
Good. From the graphics of Figure 2 regarding the assessment of the questions, it is
clear that Questions 1 through 4 are most frequently marked as “Good”. Surprisingly,
all the students answered Questions I and 2, whereas the ratio of “Non-Answered” in
Question 6 exceeded the rest of marked ratios. As for Question 7, most of the
students got “Fair”. This was partly due to the fact that students merely copied the
information from the Internet and pasted it on their worksheets, thus showing no
interest in summarizing the information in their own words.

Relating to Question 5, from the comments given by our students we gathered that
the construction of the table proved to be, in general terms, rather cumbersome.
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Quesﬁon 1 Question 2
20 o 20
15 15
310 5 j 10
5 4 5 ¢
0 1 L] 0 1 1 1
NA P F G NA P F G
Question 3 Question 4
20 - 20
15 o 15
§10 o ! 10
5 5
0 T 0 i T T 1
NA P F G NA P F G
Question 6 Question 7
20 20
15 15
i 10 i 10 4
5 5
0 0 — 1
NA P F G NA P F G

Figure 2. Assessment of the Questions of the activity with Non-Answered (NA), Poor (P),
Fair (F) or Good (G).

FINAL REMARKS

As Fauvel and Maanen (2000) point out, one should not underestimate the difficult
task of the teacher in achieving a proper transmission of historical knowledge into a
productive classroom activity for the learner. Given our lack of expertise in the field,
in this first experience we were not able to foresee all the possible obstacles in the
understanding process. Now we are aware of some difficulties inherent in the

31



material (regarding, for instance, Questions 5 and 6). First of all, the mathematical
language and form (notation, computational methods, etc) turned out to be rather
confusing right from the beginning. In addition, the syllabus and a sense of lack of
time made us cram the activity into a two-hour class. Likewise, we had a slight doubt
about how useful the topic was for our students. Why not give the opportunity to
appreciate the topic in itself, stressing the aesthetics, the intellectual curiosity, or the
recreational purposes involved? Finally, we borrowed and adapted part of Katz’s
historical modules on Statistics, but in keeping with our syllabus, more didactic
resource material on this topic should be elaborated for future use.

On the whole, however challenging, the experience proved to be rewarding in the
end. Not only did the activity supply a collection of non-artificially designed
problems, but it also helped to develop further skills, such as reading, writing and
documenting. Above all, it was a means to show the original motivation of the
normal curve and hence, to render it more understandable. This experience has shown
that probability cannot be regarded as a collection of “polished” products within a
deductive structured system, but rather as a system with a peculiar life (expectations,
false expectations and false starts), as Guzman (1993) put it, determined and
influenced by external factors and connected with mathematical and non-
mathematical domains.
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The arithmetic is part of mathematical knowledge based on the idea of the number.
The teaching of intuitive calculation in Brazil in primary education level at the end of
the nineteenth century and early twentieth century seems to be influenced directly by
the “Cartas de Parker”. These arithmetic charts based on the ideas of Pestalozzi,
Froebel and Herbart were diffused in arithmetic textbooks and educational journals,
testimonies of their strong influence in Brazil. This article is based on methodological
presuppositions of the Cultural History, of the History of School Disciplines and the
studies on the School Culture.

Keys-words: Arithmetic, Intuitive Calculation, Cartas de Parker, Grube’s Method,
Elementary level.

INTRODUCTION

This article presents one of the partial results of the literature search undertaken
within the framework of our thesis of doctorate, still in its phase of development. It
aims at carrying out a historical survey of mathematical teaching in Brazilian primary
education. We seeks to analyze the part that deals with “counting” in “reading,
writing and counting”. Furthermore, we want better understand the process of its
teaching by seeking answers to questions like: which textbooks were adopted for the
teaching arithmetic? Which role held psychology in the evolution of the arithmetic’s
textbooks for primary education? How were the contents of school arithmetic
modified in the textbooks?

By considering the contributions of Cultural History, of the History of School
Disciplines and the studies on School Culture, this research privileges the
documentary, textbook sources, school files, legislative texts related to teaching as
well as the old materials of the daily newspaper (personal records of teachers, books
of pupils, tests, school periodics and examination questions) [1].

According to Enfert (2003), contrary to what occurred for research on the history of
primary education in French, the history of mathematics teaching at this level did not
receive the attention which it deserves. Except for some cases of specialized studies,
research, in a general way, mostly treated mathematics teaching at the secondary or
tertiary levels. A history of this discipline was thus not treated yet as a whole
(arithmetic, geometry, geometrical drawing, algebra, accountancy, etc), nor over its
long duration. In the History of School Disciplines, Chervel (1998) defines a
particular phenomenon which he calls “vulgata”. At each time, the teaching given by
the teachers is, grosso modo, identical, for the same discipline and the same level. All

34



textbooks, or almost, say more or less the same thing then. The concepts, the adopted
terminology, the succession of headings and chapters, the organization of the corpus
of knowledge, even the examples or the types of practiced exercises are identical,
except for some small variations. These are the variations, which can justify the
publication of new textbooks although they present only tiny variations.

The description and the analysis of the “vulgatas™ are fundamental tasks for the
historian of a School Discipline. If it is not possible to examine the whole of the
leading production carefully, it rests with him to determine a corpus sufficiently
representative of their various aspects; it is only in this manner, that he can arrive at
concrete and conclusive results.

Research in the mathematics teaching in Brazil at primary education level during the
end of the XIX"™ century, particularly related to the textbooks written by
representative authors of their community, revealed a reference particular to what is
called the “Cartas de Parker”. Indeed, their contents seem a reference and a model
adopted by various textbooks published at the beginning of the XX™ century, and
seem to be constituted in a “vulgata” which influences the teaching of the rudiments
of calculation at this level of teaching.

INTUITIVE CALCULATION

According to Buisson (1880), intuitive calculation is a term, which means manner of
teaching the first elements of calculation. This methodology borrowed from
Germany, was diffused in Russia, in the Netherlands, in Sweden and found a strong
adhesion in the United States. This form of teaching was called Grube’s method.

In 1842, Grube published in Berlin the first edition of his Leitfaden fiir das Rechnen
in der Elementarschule nach den Grunsdtzen einer heuristischen Methode (Guide for
calculation in the elementary classes, following the principles of a heuristic method).
This “Essai d'instruction éducative”, as he called it, after causing warm discussions,
was approved by teachers. This book was also in agreement with the new system of
weight and measurements and reached in 1873 its 5™ edition. Many textbooks, in all
languages, reproduced, imitated or applied Grube’s method.

Grube’s method consists in making pupils do themselves, by intuition, the
fundamental operations of elementary calculation. Such a method aims at making
known the numbers: knowing an object, does not only mean knowing its name, but
also apprehend it in all its forms, in all its states, its various relations with other
objects; it means being able to compare it with others, to follow the transformations,
to write it and measure it, compose it and break it up, at will.

By treating numbers then as unspecified objects to which familiarize pupils, Grube is
opposed to the old sequence teaching who consists in learning successively, in first
the addition, then the subtraction, finally the multiplication and the division. It
devotes the first year of the elementary course to the study of the numbers from 1 to
10; the second year is devoted to the numbers from 10 to 100; the third year being
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devoted to the numbers from 100 to 1000, and so on, and the fourth and last year,
being devoted to the study of fractions.

This methodology does not prepare only the pupil to enter the everyday life and to
study the arithmetic, but it offers as advantage over the other methods to meet the
conditions necessary to the promotion of mental calculation. The pupils subjected to
this method do not become slaves of the numbers, their pencils and their “armed
operations”.

Soldan (1878) exposes the six most important points of the Grube’s method of
teaching:

a) Language - the language is the only means by which the teacher will have access
to what the pupil is thinking, because it is not requested any records of the
calculations made by them. A complete answer must be required pupil, because it is
only by it, that the teacher will be able to evaluate what the 