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WG7 call for papers 

 

Technologies in mathematical education has been a theme present at CERME from 
the first edition. The available technologies evolved a lot during these years, the 
research followed, sometimes anticipated these evolutions; successive CERME 
proceedings give a clear picture of this process. At CERME 5 conference, the 
conclusions of the technology working group (Kynigos et al. 2008), as well as 
Artigue’s and Ruthven’s interventions, signal perspective evolutions towards more 
comprehensive studies, in several respects, and CERME6 invites to go further in the 
directions they indicate.  

A first direction consists in the consideration of technologies within a range of 
resources available for the students, the teachers, teachers trainers etc. These agents 
can draw on software, computers, interactive whiteboards, online resources, but also 
more traditional geometry tools, textbooks etc. Various kinds of digital material are 
now extensively used, and they can be viewed as belonging to a wider set of 
curriculum material (Remillard 2005) and teaching resources (Adler 2000). This 
intention to take into account technology, but also all possible resources is indicated 
by the new working group’s title. This does not mean that studies considering a 
specific technology are not welcome. Nevertheless, we invite authors studying a 
specific tool to question the articulation between this tool and other materials. The 
purpose is to open the working group to research on diverse kinds of resources, even 
if the work still keeps a specific focus on digital material.  

A second direction corresponds to the theoretical approaches. Design issues need to 
focus on integration and impact, especially in the use of innovative technology. It 
entails the development of approaches framing research on fidelity, efficacy, and 
effective integration (Hegedus&Lesh 2008). Moreover, analysing the complex 
phenomena linked with use of resources (their design, their use by students and 
teachers, the associated learning and professional development) require holistic 
approaches. 

These two statements also meet the key challenges identified by the recent ICMI 17 
study, “Technology revisited” (Hoyles and Lagrange, to appear), whose conclusions 
will contribute to frame the work done within the group.  

We propose three main themes for WG7 contributions. Their orientation, like in 
previous CERME conferences (Drijvers et al. 2006, Kynigos et al. 2008), are 
basically the tools, the teachers, and the students. The need to account for recent 
evolutions in the available technologies and resources, as well as in research, leads us 
though to emphasize specific aspects: design, articulation between design and use; 
interaction between resources and teachers’ professional practice; technologies, tools 
and students mathematical activity. The work on each of these themes will take into 
account the two directions developed above: evolution of the resources considered, 
evolution of the theoretical perspectives; more details are given below.   
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1) Design and articulation of design and use 

Studying design issues obviously includes questioning the characteristics of the tools, 
their affordances as intended by the designers. What are these characteristics? Which 
are their implications for mathematics epistemology? Recent evolutions, from 
material designed for students, and intended to speak through the teacher, to materials 
speaking to the teacher are recorded by research about curriculum material 
(Remillard 2005). Do the resources integrate recommendations, assistance for their 
use in class, and which kind of assistance? But digital materials can also be modified 
by their users; more generally the appropriation processes induce modifications of the 
tools. How do teachers, and students, modify the characteristics of the technologies 
and resources they draw on within their appropriation processes? Reports that focus 
on fidelity, efficacy, and assess the potential impact of the technologies and resources 
are welcome.  

2) Interaction between resources and teachers’ professional practice 

The appropriation processes modify the teachers’ professional practice. Which are the 
relations between the teachers’ work with resources and their professional 
development? This question includes the studies concerned with integration of 
technology, a prerequisite for appropriation. It naturally goes further, considering 
lifelong professional development, and teacher education issues. Which kinds of 
training, to assist the integration of technology, of other materials? A specific interest 
will be devoted to collective issues: collective teachers’ work, especially as permitted 
by networking means; communities of practice, and link between communities and 
professional development. How is it possible to assist the emergence of communities, 
what is produced in the course of teachers’ collective work?  

3) Technologies, tools and students mathematical activity 

The central question in this theme has been extensively studied: how do students 
learn with tools and technology? The recent evolution of digital materials leads to 
devote a specific interest to the change of activity induced by complex materials like 
virtual learning environments; by portable technologies like USB keys; by 
networking means, allowing new forms of collaboration, between students, between 
teachers and students. What modifications of the students mathematical activity, 
collective activity in particular, do these materials induce? How do digital materials 
articulate with other resources in the students’ activity? What are the consequences of 
these new combined materials on the students’ relationship with mathematical 
knowledge? 

 

The working group is concerned with the use of technology and resources in 
mathematics education at all levels, from primary school to university. Studies related 
with out of school mathematics learning will also be considered, studies about 
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another academic field, and proposing comparisons with mathematics are also 
welcome.  
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A RESOURCE TO SPREAD MATH RESEARCH PROBLEMS IN 

THE CLASSROOM 

Gilles Aldon, Viviane Durand-Guerrier. 

INRP, IREM de Lyon, IUFM de Lyon, LEPS (Université de Lyon) 

Abstract : in this communication we intend to present a digital resource the aim of 

which is to give aid to teachers to use research problems in their classes; in a first 

part we are going to present the theoretical framework which was used by the team in 

the conception of the resource and the consequences on its model; we will present the 

results of a study dealing with the role and the impact of the resource used by 

teachers preparing lessons. 

INTRODUCTION 

Different works have shown the benefits of the use of research’s problems [Polya, 
1945, Schoenfeld, 1999, Brown and Walter, 2005, Harskamp and Suhre, 2007, Arsac 
et al., 1991, Arsac and Mante, 2007], in the construction of knowledge and both the 
interest of teachers and the difficulties to deal with in the classrooms; moreover, the 
institutional injunctions of using research problem are important in France and are 
going to take part in the final evaluation of the secondary school [Fort, 2007].  

As far as we are concerned, and in the framework of the Piagetian psychological 
theory, we assume that the construction of knowledge has to go through an 
adjustment to the milieu as we will define it in the next section, and in this context, 
research problems are elements of the “material milieu” that teachers offer to 
learners.  

We also assume that amongst all hindrances of generalization of research problems in 
the classroom, the following points are decisive: 

the important part of the experimental dimension in problem solving clashes with 
the main representation of mathematics amongst maths teachers but also in the 
society; 

the focus on heuristics and reasoning skills in maths research problem is in 
contradiction with the institutional constraints of teaching maths notions, 
particularly regarding French maths curricula; 

difficulties for teachers to pick out in the students’ activity the mathematics part of 
their work, and, as a result the notions which can be institutionalized; 

the difficulties teachers have to assess such a work, the usual assessment 
modalities being not appropriate. 
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In this context, a team of teachers and researchers1 from different institutions (IREM 
de Lyon, IUFM de Lyon, INRP and LEPS2), has worked on the construction of a 
numerical resource the aim of which is to give aid to maths teachers in order to use 
research problems in their teaching. In this paper, we will present the main theoretical 
frameworks used in the construction of this resource and will show, through the 
results of a particular study, the role this resource can play in the activity of teachers 
from the preparation of a lesson to the implementation in the classroom. 

THE THEORETICAL CHOICES 

This resource was written to be a part of the milieu of the teachers in the meaning 
Brousseau [Brousseau, 1986,Brousseau, 1997, Brousseau, 2004] and after him 
[Margolinas, 1995, Bloch, 1999, Bloch, 2005, Houdement, 2004] give to this 
concept. More precisely, learners learn through regulations of their links with their 
milieu. Going a bit deeper in this concept, Margolinas [Margolinas, 1995] described 
the structure of the milieu as a set of interlocked levels which can be described as 
follow: 

 

Level Teacher Pupil Situations Milieux 

3 Noosphere-T  Noospherian situation Construction 
milieu 

2 Builder-T  Construction 
situation 

Milieu of project 

1 Project-T Reflexive 
pupil 

Project situation Didactical milieu 

0 Teacher Pupil Didactical situation Learning milieu 

-1 Teacher in 
action 

Learning 
pupil 

Learning situation Reference milieu 

-2 Teacher 
observing 

Pupil in 
action 

Reference situation Objective milieu 

-3 Teacher 
organising 

Objective 
pupil 

Objective situation Material milieu 

Table 1 Structuring of the milieu 

                                         
1 Gilles Aldon, Pierre-Yves Cahuet, Viviane Durand-Guerrier, Mathias Front, Michel Mizony, Didier Krieger, Claire 

Tardy 

2 IREM : Institut de Recherche sur l’Enseignement des mathématiques ; IUFM : Institut Universitaire de Formation des 

Maîtres ; INRP : Institut National de Recherche Pédagogique ; LEPS : Laboratoire d’Etude du Phénomène Scientifique, 

Université de Lyon. 
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In this table, the milieu of level n is the situation of level n-1 and is made up of the 
existing relationships between M, P and T. Using the symmetry of the table and, in 
our case, proposing to the teachers a situation, (in the acceptation of the didactical 
theory of situations) in which the a-didactical situations of action had as aim to allow 
teachers to construct, by themselves, the knowledge necessary to conduct a situation 
of problem research in the classroom [Peix and Tisseron, 1998] we speak of the 
material and objective milieu of the teachers. In this study, the resource appears to be 
a part of the material milieu of the teacher and the question is: is it possible, for a 
teacher, to use the resource to facilitate his tasks: 

organizing the material milieu of the pupils, 

understanding the objective milieu of the pupils and the links between their 
knowledge and conceptions 

choosing the pertinent notions to be institutionalized in the reference milieu of the 
pupils, and anticipating the conflicts between misconceptions and tools to 
solve… 

Moreover, the theoretical framework of cognitive ergonomics through its concepts 
and methods allows us to study the competencies of the teacher in his interaction with 
the work system, and more particularly in the relationship between the prescribed 
tasks and his activity. Lastly, and in the field of using a numerical resource in 
professional tasks, the concepts of utility, usability and acceptability [Tricot et al., 
2003] have been sounded out in two different ways: 

by an evaluation by inspection in order to construct and organize the resource, 

by an empirical evaluation in a professional situation. 

Utility is “the question of whether the functionality of the system in principle can do 
what is needed” [Nielsen, 1993] 

Usability can be defined as: “the capability to be used by humans easily and 
effectively” [Schackel, 1991], but also “the question of how well the users can use 
that functionality” [Nielsen, 1993]  

Acceptability refers to the decision to use the artefact, and answers the questions: is 
this artefact compatible with the culture, the social values, global organisation in 
which the artefact has to be included. 

PRESENTATION OF THE RESOURCE 

Structure 

It is possible to use this resource in different ways; theoretical texts about the 
experimental dimension in mathematics [Dias and Durand-Guerrier, 2005, Kuntz, 
2007] can be read as well as different presentations made in conferences [Aldon, 
2007, Aldon and Durand-Guerrier, 2007]. It is also possible to understand the sense 
of the resource by reading a curriculum-vitae [Trouche and Guin, 2008] of the 
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different steps and reflections of its building. The different situations are outlined 
using a common structure: 

Maths situation out of the classical literature on open problems developed in 
particular in IREM de Lyon (nowadays, there are seven maths situation): 

Egyptian fractions: break down 1 into the sum of fractions of numerator 1. 

Trapezoidal numbers: study of the sum of consecutive whole numbers. 

The river: study of the shortest distance between two points with 
constraints. 

The number of zeros of n!: study of the digits of n! in different numeration 
systems. 

The greatest product: study of the product of integers of fixed sums. 

Polya’s urns: study of the dynamic of the composition of an urn in a 
repeated experience. 

Inaccessible intersection: find a line going through an inaccessible point. 

Maths objects that may be used to solve the given problem: for each of the 
situations, the a-priori analysis allows to extract the mathematics objects that 
are part of the mathematics situation and can be used in the process of 
resolution. 

Learning situation: how the maths situation has been transformed into a didactical 
situation? In this part of the resource, reports of real experiments can be read. 

References 

Synthesis: a ten pages synthesis of the situation allows teacher to familiarize 
themselves with the content of the section. 

Connected situations: how is it possible to protract the situation and what are the 
extensions in the maths researches nowadays? 

Introduction of the resource 

In order to confirm the hypothesis and to evaluate the utility, usability and 
acceptability of the resource, we built an experimentation with teachers from the first 
handover of the resource to the real experiment of a research problem in the 
classroom. In this section we are going to focus on the first handover in order to 
evaluate the usability of the resource. 

The methodology of this part of the experimentation was built using an observation 
of teachers faced to a professional problem (preparing a lesson using research 
problem); the context was a training course with sixteen teachers involved. They 
discovered the resource during this course as an artefact in the sense that the 
functioning of the resource has not been explained; the observer (the first author of 



 

CERME 6 13 WG7 

 

this paper) recorded dialogues of two teachers and in the same time recorded the 
computer screen.  

There is a confrontation, for the same person, between the position of expert (a 
teacher preparing a lesson, hence choosing objectives, a problem linked to these 
objectives, organising time of the lesson …) and the position of beginner in two 
different ways: using research problem in his (her) preparation and using a new tool. 
The theoretical framework of the didactic situation theory gave us the possibility to 
observe the position of the resource in the milieu of the teacher and to observe why 
this resource gives a possibility to the teacher to have a look into the pupils’ objective 
milieu as described above. The cognitive ergonomics framework gives us keys to 
analyse the activity of teachers in this professional situation. Moreover, the concept 
which is tested was the usability of the resource, using the following criterions 
[Tricot et al., 2003]: 

Possibility of learning the system 

Control of the errors 

Memorization of the functioning 

Efficiency 

Satisfaction 

But also, and we will see why later, its acceptability, that is to say the degree of 
confidence the teachers have. 

The first result that we can highlight is the very quick adaptability of the observed 
teachers in front of the resource. After à three minutes wandering, the teachers used 
the different path in the resource to find exactly what they want as it can be possible 

to see when teachers changed from one situation to another. In the first time, the 
mouse hesitated on the screen, going from one button to the others before the click, 
and progressively, the structure became clearer and the adequacy between the given 
objective and the browsing into the resource became safer: 

After nine minutes: 
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 Are you interested?  

 Yes  

 (click on “situation mathématique
3” 

(two clicks and two screens in one second) 

 The mathematical situation… (they 

read) 

 Possible for our pupils (click, click) 

 I would like to see that (the mouse turn 

over the menu “possible maths objects…”) 

 

  

 

 

 

 

 

 

 

 

The second important observation, linked to the concept of acceptability can be seen 
by the feeling of trust in the authors of the resource; at the beginning of the 
exploration, the two teachers click on the menu: theoretical framework, and after 
some seconds says: 

                                         
3 Mathematical situation 
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 “We are not going to read the whole text…”  

And, later, in front of a situation, one of the teachers said: 

“We are going to read what they say…” 

These two brief sentences show us the growing of the confidence during the use of 
the resource and can be considered as a clue of the acceptability of the resource. The 
other observations and particularly the use of the resource to construct a real lesson 
confirm us in the feeling of the acceptability of the resource. 

Realisation 

In order to go on in the evaluation of the resource, a second experimentation has been 
built with the goal of testing the utility and the acceptability of the resource; we 
observed a research problem lesson focusing more particularly on the interactions 
between pupils and teacher during the situation of action. The teacher who was 
observed and interviewed, participated to the training course described above. 

The chosen mathematical situation was the trapezoidal numbers and the question 
given to the pupils of a scientific eleventh class4 was: 

What are the whole numbers which are sum of at least two consecutive integers? 

Interrogating the two theoretical frameworks, the interview with the teacher allows us 
to bring to light utility and acceptability of the resource, but also to understand the 
position of this resource in the teacher’s milieu. 

Utility of the resource is in this case obvious, the teacher having prepared the lesson 
with the resource: 

“Yes, yes I use it… I read all you wrote about this problem. Oh, yes, without the resource, I 
think I should not give this problem to my pupils, because I would have spent too much 
time to do this work… I would not do that!”  

Regarding acceptability, a lot of clues allow us to consider, for this teacher and in this 
experimentation, the resource as acceptable, for example the feeling that the lesson 
created using the resource brought a new dimension to her course: 

“I think I’ll do that earlier next year, to create something in the class, precisely, this 
dynamic which makes the pupils actors, as I said to you, a pupil was speaking from the 
board, and I was at the back of the class, and the other pupils ask questions… I think it’s a 
good way to involve pupils in the maths lessons, to put a lot of them in maths… For me, it’s 
very confident, visibly they enjoy this time, and I think it’s something important to insert 
pleasure in maths lessons, it’s something which questions me, because it’s so easy to do 
maths without pleasure!” 

                                         
4 Pupils are sisteen-seventeen years old 
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Moreover, the interview confirms the position of the resource in the objective milieu 
of the teacher in a posture of preparation of a lesson including a research problem. 

In an other hand the observation of a group of pupils gives us interesting feedback 
about the mathematical objects students deal with and shows that the a-priori 
analysis of the resource corresponds to the reality of the class; for example, one of the 
mathematical object which was highlighted by the authors of the resource related to 
this problem was the powers of two. In other words, the hypothesis was that powers 
of two belong to the objective milieu of the pupils and, consequently are a field of 
experiencing; the confrontation of pupils with these objects allows them to change 
their position in the milieu and to bring with the help of the institutionalisation these 
objects in the reference milieu of the pupils: 

F2: (using her calculator) two to the power five gives thirty two… Yes ; two to the power 
seven gives one hundred twenty eight 

G: two hundred and fifty six, five hundred and twelve, thousand and twenty four, two 
thousands and twenty eight … 

F2: how do you calculate to obtain the results so quickly? 

G: you multiply by two 

F2: Ah yeah right! 

In this small excerpt, the two definitions of the powers of two as an iterative or 
recursive process are called up and the link between these definitions is made by F2; 
it is possible to think that the recursive definition belongs now to her objective milieu 
and a necessary work must be done to institutionalize it in her reference milieu. The 
fact that this object was present in the resource allows the teacher to pay attention to 
this dialogue and to use it in her lesson: 

 

CONCLUSION 

The described engineering and the results of observations and interviews show the 
place of the resource in the milieu of the particular teachers involved in this 
experiment, and clearly show the utility, usability and acceptability of this resource. 
Regarding the didactical theory of situations, this experimentation shows that the 
resource emplaced in the material milieu of the teachers can be mobilised in their 
objective milieu and used in the setting up of research problem lessons in the 
classroom. The resource also allows teachers to launch themselves in the different 
milieu of the students and to understand the position of mathematical objects in these 
milieus, and consequently it facilitates the institutionalization.  

However, new questions appear, in particular linked to the genesis of this resource 
and its transformation from an external resource possibly used by a teacher to a 
document available in his/her environment. 
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NEW DIDACTICAL PHENOMENA PROMPTED BY TI-NSPIRE 

SPECIFICITIES – THE MATHEMATICAL COMPONENT OF 

THE INSTRUMENTATION PROCESS 

Michèle ARTIGUE, Caroline BARDINI 

Université Paris Diderot - Paris 7, Université Montpellier 2 

Relying on the collective work carried out within the e-CoLab project concerning a 

pilot experiment on the new calculator TI-nspire, we address the issue of the 

relationships that can arise between the development of mathematical knowledge and 

instrumental genesis. By analyzing the design of some resources, we first show the 

importance teachers involved in the project gave to such relationships. We then 

approach this issue from the student’s perspective, using examples for illustrating the 

intertwined development of mathematical and instrumental knowledge.  

INTRODUCTION  

Educational research focusing on the way digital technologies impact, could or 
should impact on learning and teaching processes in mathematics has accumulated 
along the last two decades as attested for instance by the on-going ICMI Study on this 
theme. Questions and approaches have evolved as research understood better: the 
ways in which the computer transposition of knowledge (Balacheff, 1994) acts on 
mathematical objects, the impact of digital technologies on semiotic activities, and 
the influence of such impact on learning processes (Arzarello, 2007). Questions and 
approaches have evolved also due to the technological evolution itself, e.g. for 
instance the increased potential that technology offered to access mathematical 
objects through a network of inter-connected and interactive representations, as well 
as to develop collaborative work (Borba & Villareal, 2004). Increased technological 
power, nevertheless, generally goes along with increased complexity and rising 
distance from usual teaching and learning environments. Researchers have hence 
become more and more sensitive to the processes of instrumentalization and 
instrumentation that drive the transformation of a given digital artefact into an 
instrument of the mathematical work (Guin, Ruthven, & Trouche, 2004). They have 
revealed the underestimated complexity, and the diversity of the facets of such 
instrumental genesis both on the student and teacher side (Vandebrouck, 2008).  

This contribution situates within this global perspective. It emerges from a national 
project of experiment on the new TI-nspire in which the authors are involved. This 
artefact is quite innovative but also rather complex and remote from standard 
calculators, even from the symbolic ones. This makes the didactical phenomena and 
issues associated with both its instrumentalization and instrumentation particularly 
problematic and visible. In this contribution, we pay a particular attention to the 
interaction between the development of mathematical knowledge and of instrumental 
genesis, analyzing how the teachers involved in the project manage it and how 
students experience it. Through a few illustrative examples, we point out some 
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phenomena which seem insightful from this point of view, before concluding by 
more general considerations. 

PRELIMINARY CONSIDERATIONS 

Let us first briefly present the TI-nspire and its main innovative characteristics, then 
the French project e-CoLab, the theoretical frame and methodology of the study.  

A new tool   

TI-nspire CAS (Computer Algebra System) is the latest symbolic ‘calculator’ from 
Texas Instrument.  At first sight, it just looks like another calculator; however, it is a 
very novel machine for several reasons: 

Its nature: the calculator exists as a “nomad” unit of the TI-nspire CAS software 
which can be installed on any computer station;  

Its directory, file organiser activities and page structure, each file consisting of one or 
more activities containing one or more pages. Each page is linked to a workspace 
corresponding to an application: Calculations, Graphics & geometry, Spreadsheet 
and lists, Mathematics Editor, or Data and statistics; 

The selection and navigation system allowing a directory to be reorganised, pages to 
be copied and/or removed and to be transferred from one activity to another, as 
well as moving between pages during the work on a given problem; 

Connection between the graphical and geometrical environments via the Graphics & 
geometry application, the ability to animate points on geometrical objects and 
graphical representations, to move lines and parabolae and deform parabolae; 

The dynamic connection between the Graphics & geometry and Spreadsheet & lists 
applications through the creation of variables and data capture and the ability to 
use the variables created in any of the pages and applications of an activity. 

When presented to the TI-nspire, we assumed that these features could offer new 
possibilities for students’ learning as well as teachers’ actions. They could foster 
increased interactions between mathematical areas and/or semiotic representations. 
They could also enrich the experimentation and simulation methods, and enable 
storage of far more usable records of pupils’ activity. However, we also hypothesized 
that the new nature of this calculator and its complexity would raise significant and 
partially new instrumentation problems both for students and teachers and that 
making use of the new potentials on offer would require specific constructions, and 
not only an adaptation of the strategies proved successful with other calculators.  

Excerpts both from students’ interviews and teacher’s questionnaires carried out/ 
handed out at the end of the first year of experiment support our hypotheses: 

“At first it was difficult, honestly, I couldn’t use it… now it’s OK, but at first it was hard 
to understand… the teacher, other students helped us and the sheet we got helped us 
out… how to save, use the spreadsheet, things like that…” (Student’s interview)  
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 “In my opinion the richness of mathematical activities thanks to the connection between 
the several registers is the key benefit […] The difficulty will be the teacher’s workload 
to prepare such activities so to render students autonomous.” (Teacher’s questionnaire)  

 “There are still a few students for whom mathematics poses a big problem and for whom 
the apprenticeship of the calculator still remains arduous. These students find hard to 
dissociate things and tend to think that the obstacles they face are inherent to the tool 
rather than to the mathematics themselves.” (Teacher’s questionnaire)   

Context of the research 

This study took place in the frame of a two-year French project: e-CoLab 
(Collaborative mathematics Laboratory experiment), based on a partnership between 
the INRP and three IREM: Lyon, Montpellier and Paris [1]. It involved six 10th grade 
classes. Each student was provided with a TI-nspire CAS calculator, kept it 
throughout the school year and was allowed to take it home. The groups on the 3 sites 
were composed of the pilot class teachers, IREM facilitators and university 
researchers. They met regularly on site although the exchange also continued 
distantly through a common workspace on the EducMath site, which allowed work 
memories to be shared and common tools (questionnaires, resources) to be designed. 

All pilot teachers had strong mathematical background but the expertise in using ICT 
varied from one to another. In the 1st year of the project, teachers and students were 
equipped with a prototype of the TI-nspire they had never worked with before. 
However, the willing of articulating mathematical with instrumental knowledge was 
shared by all teachers, despite the work they later on admitted it required: 

“We have to devote an important amount of time to the instrumentation. This requires 
teachers to invest quite some time in order to design the activities, especially if they want 
to associate the teaching of mathematical concepts.” (Teacher’s questionnaire)  

Theoretical framework 

Two theoretical streams guide our analyses.  

The first one is related to the instrumental approach introduced by Rabardel (1997). 
For Rabardel, the human being plays a key role in the process of conceiving, creating, 
modifying and using instruments. Throughout this process, he also personally evolves 
as he acclimatises the instruments, both in what regards his behaviour as well as his 
knowledge. In this sense, an instrument does not emerge spontaneously; it is rather 
the outcome of a twofold process involved when one “meets” a technological artifact: 
the instrumentation and the instrumentalization. Rabardel’s ideas have been widely 
used in mathematics education in the last decade, first in the context of CAS (cf. 
(Guin, Ruthven & Trouche, 2004) for a first synthesis) then extended to other 
technologies as spreadsheets and dynamic geometry software, and more recently to 
on-line resources. Recent works such as the French GUPTEN project have also used 
the concept of instrumental genesis for making sense of the teachers’ uses of ICT 
(Bueno-Ravel & Gueudet, 2008).  
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We are also sensitive to the semiotic aspects of students’ activities. Not only are we 
taking into account Duval’s theory of semiotic representation (Duval, 1995) and the 
notions attached to it (semiotic registers of representation and conversion between 
registers for instance), but more globally the diversity of semiotic systems highly 
intertwined that are involved in mathematical activity including gestures, glances, 
speech and signs (i.e. the “semiotic bundle” (Arzarello, 2007)). In particular, when 
examining student’s activity, we pay specific attention to the embodied and 
kinesthetic dimension of it (Nemirovsky & Borba, 2004) via the pointer movement or 
students’ gestures.  

Methodology 

We are interested in the students’ instrumental genesis of the TI-nspire and in 
particular in considering the role mathematical knowledge plays in such genesis. This 
analysis cannot be carried out without taking into account the characteristics of the 
tasks proposed to students and the underlying didactical intentions. Our methodology 
thus combines the analysis of task design as it appears in the resources produced by 
the e-CoLab group, and the unfolding of students’ activity.  

The analysis of students’ activity relies on screen captures of students’ activities 
made with the software Hypercam. HyperCam, already used in other research 
involving the study of student’s use of computer technology (see for e.g. Casyopée, 
(Gélis & Lagrange, 2007)), enables to capture the action from a Windows screen (e.g. 
10 frames/sec) and saves it to AVI movie file. Sound from a system microphone has 
also been recorded and some of the activities have been video-taped. 

When relevant, we also back up our analysis by relying on students or teachers’ 
interviews/questionnaires carried out independently from the activities.  

TEACHERS’ INSTRUMENTATION – DIDACTICAL INTENTIONS 

Didactical intentions  

The pilot teachers involved in the experiment cannot be said to be “ordinary 
teachers”. All of them have been involved, in one way or another, in the IREM 
network; thus they are all somehow sensitive to didactical considerations and share a 
fairly common pedagogical background. The relative success of the project was in 
part due to this familiarity, as one teacher acknowledged: “It is easier to communalize 
if we share the same pedagogical principles.”  

In particular, the willingness of intertwining mathematical content with instrumental 
knowledge was commonly held, and despite the hard work that it meant, the joint 
work was perceived as a true added value as teachers seemed to work in harmony: 

 “We have to carry the instrumentalization and the mathematical learning in parallel. 
Activities are not evident to think of and take time to design. The help from others make 
us gain time and provide us with new ideas.” (Teacher’s questionnaire)  
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Imprint on resources  

Around 25 resources were designed during the two years of the project. There are two 
kind of resources: those created essentially to familiarize pupils with the new 
calculator (presentation of the artifact and introduction of some of its potentials), and 
those constructed around (and we should add “for”) the mathematics activity itself 
[3]. In what follows, we mainly focus on the resources that support the 
teaching/learning of mathematical concepts and examine how teachers managed to 
articulate mathematical concepts with instrumental constituents.  

The didactical intentions previously mentioned are clearly visible when examining 
the resources teachers designed, showing that these were built taking into account  
both the instrumental knowledge and mathematical content. In fact, the activities are 
anchored on the mathematical component yet they also reflect that a progressive 
instrumentation was carefully planned as new mathematical concepts unfold.  

The Descartes resource is very enlightening in this sense. It has been adapted by the 
Paris team from a resource built by the Montpellier team, having in mind an 
introduction into the dynamic geometry of the calculator associated with an 
application of the main geometrical notions and theorems introduced in Junior High 
School. It also offered the advantage of linking the prior work which had just been 
performed on numbers and geometry. 

In this resource, several geometrical constructions are involved, enabling products 
and quotients of lengths to be produced and also the square root of a given length to 
be constructed. For the first construction proposed, the geometrical figure is given to 
the students together with displays of the measurements required to confirm 
experimentally that it does provide the stated product (fig. 1). The students simply 
have to use the pointer to move the mobile points and test the validity of the 
construction. Secondly, for the quotient, the figure provided only contains the support 
for the rays [BD) and [BE). The students are required to complete the construction 
and are guided stepwise in the successive use of basic tools as “point on”, “segment”, 
“intersection point”, “measurement” and “calculation”. Thirdly, they are asked to 
adapt the construction to calculate the inverse of a length. Finally for the square root 
they have the Descartes figure and text, and are required to organise the construction 
themselves. Instructions are simply given for the two new tools: “midpoint” and 
“circle”.  

In his treatise on Geometry, Descartes explained how to construct the product of 2 numbers 

 
 

Figure 1. First part of the Descartes resource (extracted from the pupil sheet and the associated tns file)  
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 In what concerns the resource Equal areas, the mathematical support is an algebraic 
problem with geometrical roots; it consists in finding a length OM such that the areas 
of two surfaces are equal (fig. 2). The expression of the two areas as functions of OM 
are 1st and 2nd degree polynomial expressions, and the problem has a single solution 
with an irrational value. This therefore falls outside of the scope of the equations 
which the students observed are able to solve independently. In the first version of the 
resource, their work was guided by a worksheet and included the following stages: 
geometrical exploration and 1st estimate of the solution, refining the exploration with 
spreadsheet to end in a interval for the solution of length 0.01, use of CAS to obtain 
an exact solution, and production of the corresponding algebraic proof in 
paper/pencil.  

 
   

 
Figure 2.  Exploring progressively the problem of Equal Areas using different applications  

Experimentations led to the development of successive scenarios where more and 
more autonomy was given to the students for solving this problem; yet they still 
imposed students to use several applications, to discuss the exact or approximate 
nature of the solutions obtained, and to judge the global coherence of the work. 

MERGING MATHEMATICS AND INSTRUMENT – STUDENTS’ 

VIEWPOINT  

Our analysis will rely on the experimentation of the two particular resources already 
mentioned (Descartes and Equal areas) for the following reasons: they have been 
designed with a clear focus on both mathematical and instrumental issues, but take 
place at different moments of students’ learning path and have different mathematical 
and instrumental aims. Descartes has been proposed early in the school year; it aims 
at introducing the dynamic geometry of TI-nspire while revisiting some main 
geometrical notions of junior high school, and connecting these with numbers and 
arithmetic operations. Equal areas has been proposed several months later, at the end 
of the teaching of generalities about functions. It aims at the solving of a functional 
problem from diverse perspectives, and at discussing the coherence of the results that 
these complementary perspectives provide. It also aims at providing us with some 
evidence on students’ instrumental genesis after 6 months of use of TI-nspire.  
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Students and the Descartes resource 

Two sessions were used for this resource in the experimentation, and an interesting 
contrast was observed between the two sessions. The smooth running of the first 
session evidenced that a first level of instrumentalization of the dynamic geometry of 
TI-nspire was easily achieved in this precise context. The successive difficulties met 
in the second session revealed both the limits of this first instrumentalization and the 
tight interaction existing between mathematics and instrumentation. In what concerns 
the instrumentalization, we could mention for instance students who inadvertently 
created points that could superimpose on the points of the construction and invalidate 
measurements; the fact that they could not handle short segments on the calculator, or 
that they had not understood how to “seize” length variables in the geometry window 
for computing with them…   

Regarding the interaction between mathematics and instrumentation, one difficulty 
appears to be particularly perceptible in this situation:  measures and computations in 
the geometry application are dealt with in approximate mode. Thus, when testing the 
validity of the construction proposed by Descartes for the quotient for instance, the 
students did not get exactly what they expected and were puzzled. Very interesting 
classroom discussions which attest the intertwining of mathematical and instrumental 
issues emerged from this situation. Students had limited familiarity with the tool, and 
had to understand that exact calculations are reserved to the Calculation application. 
The problem nevertheless was not solved just by giving this technical information, 
showing that this was not enough for making sense of such information. It also 
required students to reflect upon the idea of number itself, to be able to discreminate 
a number from its diverse possible representations, and to consider the notions of 
exact and approximate calculations. 

Students and the Equal area resource 

As already explained, this resource is quite different from the previous one and 
students had been using the TI-nspire for more than 6 months when it was proposed 
to them. It has been experimented several times with different scenarii, and the 
analysis of the data collected is still on-going [2]. Some instrumentalization 
difficulties were still observed, even when students worked with an improved version 
of the artifact. These often concerned the spreadsheet application, less used, but the 
main difficulties tightly intertwined mathematics and instrumental issues as in the 
previous example. We will illustrate this point by examining the use of spreadsheet 
for finding and refining intervals that include the solution. 

Students used the spreadsheet application after a geometrical exploration of the 
problem. This prior exploration had convinced them of the existence and uniqueness 
of the solution, provided an approximate value and showed that the geometrical 
application could not provide exactly equal values for the two areas. The use of the 
spreadsheet application generally raised a lot of difficulties linked to the syntax for 
defining the content of the successive columns, and for refining the step taking into 
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account the existing limitation in the number of lines available. Students often tried to 
refer to spreadsheet files used in previous problems to solve them. Some could be 
helpful (another functional problem), some were problematic (a probabilistic 
situation recently studied). Choosing an appropriate file required to see the 
similarities and differences between the mathematical problems at stake. Benefiting 
from an adequate file required to match the two mathematical situations, establishing 
correspondences between the data and variables involved, and understanding how 
these reflected in the syntax of the commands. The use of the generated tables, once 
obtained, also raised many difficulties. Students tried to get the same values for the 
two areas or to find the closest ones. This was not easy at all, and very few of them 
were spontaneously able to create a new column for the difference. Moreover, when 
asked to find an interval for the solution, they were unable to exploit the table in a 
successful way. The idea that the solution of the problem corresponded to an 
inversion in the order of the two areas, and that they had thus to look at the two 
successive lines showing this inversion for getting the limits of the interval asked for 
was not a natural idea. The screen copies and discussions between students or/and 
with the teacher of this episode clearly illustrate to what point mathematics and 
instrumentation are intertwined.  

In these two examples, we have focused on the mathematical/instrumental connection 
through the analysis of students’ difficulties but the observations also show episodes 
where an original mathematical/instrumental synergy is at stake. We will illustrate 
this by examining the activity of a group of students working on the same problem, 
but with greater autonomy. This group begun by a geometrical exploration, then 
defined the two functions expressing the areas and moved to a graphical exploration, 
selecting an appropriate window for the problem (0!x!4). They carried out cleverly 
this exploration, created the intersection point of the two curves to get its coordinates 
and found numerical values with only 6 decimals. This fact associated with the visual 
evidence of the intersection point convinced them that they had got the exact 
solution. They came back to the geometry page and checked that this solution was 
coherent with the approximate value with 2 decimals they had already got. They then 
moved to the calculation application (exact mode) and asked for the solution of the 
equation. They obtained 2 irrational values and were puzzled. The screen captures 
show several quick shifts between the graphic and calculation pages, before one of 
the boys decided to ask for an approximate value of the two solutions. Once obtained, 
they came back to the graphic page, changed the window so to visualize the 2nd 
intersection point, seemed satisfied, went back to the geometry page and discarded 
the 2nd solution as non relevant. Once more, we cannot enter into more details, but the 
productive interplay is here evident. Let us just add that an interesting collective 
discussion took then place about the conviction of obtaining an exact solution in the 
graphic page, and the rationale underlying it. Linked with a deep mathematics 
discussion, the way TI-nspire manages approximations in the different applications 
and the way the user can pilot the number of decimals was clarified.     
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For making sense of such synergies and instrumented practices, there is no doubt in 
our opinion that a semiotic approach that solely takes into account the treatments 
inside a given semiotic register of representation or conversions between such 
registers is not fully adequate. What we observe indeed is a sophisticated interplay 
between different instruments belonging to the students’ mathematical working 
space, and a swing between these certainly supported by technological practices 
developed out of school.  These are efficiently put at the service of mathematical 
activity, and part of their efficiency also results from their kinesthetic characteristics.  

Moreover, when we consider the diversity of perspectives students elaborated for 
approaching the same mathematical problem, and the small group and collective 
discussion that rose about the potential and limits of these different perspectives as 
well as their global coherence, there is not doubt that the work performed by the 
students in this task corresponds to a quality of mathematical activity hardly observed 
in most grade 10 classes in France. 

CONCLUSION AND PERSPECTIVES  

Due to its specific features which distinguish TI-nspire from other calculators and as 
it had been envisaged a priori, the introduction of this new tool was not without 
difficulty. It required considerable initial work from the teachers, both to allow their 
own rapid familiarisation as well as the students’ one but also to actualize the 
potentials offered by this new tool in mathematics activities. When examining both 
the design of the resources created by the pilot teachers and the work performed by 
students, as we have tried to show in this contribution, we seize how delicate and 
somehow frail the harmony between the mathematical and instrumental activity is, 
and how the semiotic games underlying it are complex. We also see the impact of 
new kind of instrumental distance (Haspekian & Artigue, 2007) and closeness that 
shaped teachers’ and students’ activities: on the one side, distance with more familiar 
mathematical tools and especially graphic and even symbolic calculators, on the other 
side closeness with technological artifacts on offer out of school (computers, IPods, 
etc…). These characteristics affect differently teachers and students, and differently 
individuals belonging to the same category according to their personal characteristics 
and experience. They can have both positive and negative influence on teaching and 
learning processes and these needs to be better understood. For that purpose, beyond 
the theoretical constructs we have used in this study, we think interesting to extend 
the tool/object dialectics (Douady, 1986) to the instrumental component of the 
activities. By choosing to closely articulate mathematical and instrumental 
knowledge, the later is inevitably introduced within a specific mathematical context. 
Reinvesting instrumental knowledge also requires, even implicitly, students to 
decontextualise and to a certain extend generalize what has been acquired.  

NOTES 

1. A more general overview of the project as well as other findings can be found elsewhere (see 
Aldon et al., 2008). 
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2. More will be accessible at the time of CERME6 we hope in (Hérault, to appear). 

3. Some resources can be found at: http://educmath.inrp.fr/Educmath/partenariat/partenariat-inrp-
07-08/e-colab/  
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DESIGNING A SIMULATOR IN BUILDING TRADES AND USING 

IT IN VOCATIONAL EDUCATION 

Annie Bessot, Colette Laborde 

DIAM – LIG, University of Grenoble, France 

Abstract. This paper deals with the design, the production and the uses of a simulator 

for the activity of marking out on building sites from reading a marked plan. The 

main design principle of this simulator lies in that it is not meant for reproducing 

accurately the real context of the activity but it should offer the possibility of posing 

problems of the work situation through a prior conceptual analysis of the 

professional activity. 

What is a reading-marking out activity in a building work? Most of building tasks are 
based on reading plans for marking out on the building site. We call this kind of 
tasks, reading-marking out tasks. In a building site, setting out elements takes into 
account what will be set out later. For example, when a floor is to be laid down, the 
marking out of the floor must leave holes for water pipes and electric cables. Setting 
out a wall must plan location for windows and doors by marking out their contour. 
Such marking out is called “boxing out”. Generally speaking, a boxing out is a 
formwork placed in the middle of a structure before casting concrete, used to set 
aside an area in which additional equipment can be added at a later date. This task of 
reading information from a plan to mark out contours and boxing out on the building 
site is usual for workers in building trades. 

Two types of controls can be distinguished in the marking out of boxing out: 
- controls coming from reading information on the plan 
- subsequent and effective controls at the moment of putting the additional 
elements (pragmatic controls), 
the first type of controls being oriented towards the second type of controls. 

The first type of controls is the focus of our attention. In absence of pragmatic 
control, only controls guided by knowledge about space and instruments can take 
place. The activity of setting out boxing out can allow researchers to observe 
conceptualisation and help them answer questions such as: what is the nature of 
knowledge involved in this activity? How is such knowledge organized and what 
relationship does it have with the artefacts available on the building site? 

The observation of students of a vocational school gave evidence of a discrepancy 
between procedures of students and of professionals in this reading-marking out 
activity on building site from reading a plan. Two types of analysis were carried out 
in order to better know this discrepancy and to understand the reasons:  an analysis of 
the geometry in action underlying the students’ activity in reading marking out tasks 
in workshop and an analysis of the transposition of the professional activity in 
vocational education was needed. The first analysis is presented in Bessot & Laborde 
(2005). The second analysis focused on the place and status of reading-marking out 
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activities in vocational education, in particular when preparing students to a 
certification of qualified workers for building trades (in French : Brevet 
d’Enseignement Professionnel). It was carried out and showed that the reading 
marking out situation that constitutes an indivisible entity in the professional practice 
is divided or almost absent from the vocational education institution (Metzler 2006). 
A simulator is for us a means of designing situations restoring the unity of reading 
marking out activity in the three teaching places of French vocational education in 
which knowledge about space is part of the learning aim: in the mathematics teaching 
(in particular geometry), in the teaching of construction, in the teaching of practice in 
workshop.  

According to a key design choice, the simulator was meant as an open-ended 

environment offering the possibility of constructing didactic situations based on 
problems previously identified in the analysis of professional situations. 

FONDAMENTAL PROBLEMS INVOLVED IN READING-MARKING 

OUT PROFESSIONAL SITUATIONS 

Previous research on different types of space (Bessot & Vérillon 1993, Brousseau 
1983, Berthelot & Salin 1992, Samurcay 1984) as well as the analysis of professional 
practices (Bessot & Laborde 2005) allowed us to identify three types of problems 
related to the invariants specific to reading-marking out situation. The two first types 
are related to mesospace, the third type to the instruments of the building site. 

The first type of problems is the problem of locating the local space in which marking 
out takes place within the mesospace of the building site. Two types of space are 
involved: the local spaces in which marking out the lines is achieved, and the global 
space of moves that allows the worker to move from one local working space to 
another one. 

Locating the local space requires coordinating three frames of reference (Samurçay 
ibid.):  
- the frame of reference attached to the subject (egocentric reference frame) 
- the frame of reference of the lines marked on the building site (allocentric 
reference frame) to construct from fixed existing objects of the mesospace that may 
also be lines already marked on the building site  
- the frame of reference of the plan that is the dimension system. 

The second problem related to mesospace deals with the coordination of local spaces 
(Brousseau ibid.) that may be distant from each other. This coordination is needed in 
the process of obtaining the expected global set of marked lines of mesospace. 

The third problem is related to the use of instruments: transferring measures requires 
taking into account the features of the instruments. 
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2. CHOICES FOR SIMULATING MESOSPACE 

In order to decouple the problem of local marking out from the one of moving and 
orienting were created two different windows: the first window allows the worker to 
have access to various local spaces but never to the entire space; the second one 
provides access to the visual field of the worker within the global space and his/her 
move in this global space. In the second window (global space) one can only move, 
in the first one, one can mark out by means of instruments and one can move without 
a general view (through the scrolling bars). Here are presented the features of these 
two windows. 

� Window simulating the local space for marking out 

This window simulating the visual field of the worker with real dimensions 1,50 m by 
1,10 m is the screen of the computer providing a representation of the real visual field 
on a scale of 1 to 5 (Fig. 3).  

One can perform measurement and marking out with the simulated instruments (see 
below). This window is located within the global space for marking out which is not 
visually totally accessible. One can move in the global space from one local space to 
another one by using the scrolling bars of the window (Fig. 1) but with only a partial 
view at each moment making difficult the linking up of local spaces. 

 

Fig. 1: Window simulating the marking out local space 

We wanted to simulate the change of viewpoint when the worker is moving away 
from or closer to the lines marked on the site. Zoom out (Zoom-) and zoom in 
(Zoom+) possibilities have been set up to simulate these moves, moving away and 
moving closer. Zoom facilities are limited in order to avoid a global view of the space 
for marking out. In addition, it is not possible to perform marking out when the zoom 
tool is active but it is possible to move the instruments. At any time, it is possible to 
come back to marking out by pressing the key “Zoom 0”. This zooming possibility 
makes easier an accurate reading of the marks of the measuring tape and the move 
from one marking out local space to another one at a small distance. 

� Window simulating the global space 

In order to locate the current marking out local space within the whole space, it is 
possible at any time to have access to the simulation of the global space by pressing 
F9 key. The window global space is simulated by a squared vignette with a 7,5 cm 
long side representing a real squared space with a 5m long side (Fig. 3 et 4). 
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When opening the window, a yellow hard hat appears that represents the worker with 
its visual field represented by a rectangle. This rectangle is the image at scale of the 
screen (marking out local space). When opening the window, the yellow hard hat is 
always oriented vertically below the rectangle (Fig. 3, 4 et 7). 

It was chosen to simulate the moves of the worker (yellow hard hat) and not its 

position (Fig. 6 et 7). Two moves are possible: shifts and rotations which are 
multiples of a quarter turn. Shifts are performed by directly moving the rectangle 
through the mouse. Rotations are egocentric and are performed by pressing one of the 

three buttons « > », « < », « � »: to get the marking out 
local space on the right of the worker press button « > », 
on the left of the worker press button « < », behind the 
worker press button « � ». When back to the local space 
(Fig. 6), the worker sees the lines oriented as resulting 
from the move performed in the global space window. 
In this way the decision of moving and the effect of the 

move on the visual field are decoupled. If from the marking out local space one 
comes back to the global view (F9 key), when opening the window, the yellow hard 
hat is always below the rectangle representing the local space (Fig. 7). Without a 
fixed frame of reference, the change of position cannot be inferred from the position 
of the yellow hard hat with respect to the fixed border of the screen. 

    

Fig. 2: Window «marking out local space»     Fig. 3: Window global space in the screen 

(after pressing F9 key) 

          

Fig. 4: Local space in the global space window    Fig. 5: After pressing button « < » 

 

On the right On the left 

In the front of 

Behind 
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- 90 °

      
Fig. 6: After pressing « OK »                        Fig. 7: After pressing « F9 »  

           back to local space       back to global space 

3. CHOICES FOR SIMULATING OBJECTS 

� Choices for simulating the prefabrication table  

The prefabrication table in which the slab is poured, is simulated by three rectangles 
with same width 0,05m joined in an U shape: the table is 4m long and 2,5m wide. 
When opening the simulator, the borders of the table may have various directions 
with respect the borders of the screen: parallel to the screen borders (see Fig. 8) or not 
(see Fig. 10). The U shape can be oriented in various directions (see Fig. 8 and 9). 

 
The table is not totally visible in the local space although as fixed object of this space, 
it can serve as frame of reference of the mesospace for locating lines in coordination 
with the plan. The table is only totally visible in the global space window (key F9). 

� Choices for simulating the use of instruments 

The choices for simulating instruments deal with their aspect, their accessibility, their 
moves and their use. We decided that all instruments should look like real 
instruments. In particular their dimensions are proportional to real dimensions. The 
2,5m long ruler and the 3m long tape even partly unwound stick out beyond the 
visual field (see Fig. 11 and 12). 



 

CERME 6 34 WG7 

 

   

       Fig. 11: The ruler cannot be           Fig. 12: Apart of the measuring tape 

                     totally seen   

Marking out instruments, namely the pen and the blue line are permanently visible as 
icons at the top of the screen.  

Instruments for measuring and transferring geometric properties read from the plan 
(setsquare, ruler and tape) are put at the beginning in three boxes labelled with their 
names, which are simulated by rectangles located in a corner of the global space 
accessible by moving in this space. Once an instrument is out by clicking on its box, 
the worker may have to move to find it again in his/her visual field (resorting to the 
global space window or to zoom) and to shift it in the screen (local space) to the 
adequate location in order to perform a marking out. 

The materiality of the instruments was not preserved in that simulated instruments 
can overlap. However seeking to make the edge of an instrument coinciding with the 
prefabrication table or with the edge of another instrument partly replaces this 
materiality. However note that the simulated tape is also retractable as in reality in a 
pink squared case. 

4. CONCLUSION ABOUT THE DESIGN OF THE SIMULATOR 

One of the important contributions of simulators lies in the possibility of being freed 
of the constraints of reality, like the irreversibility of some actions or the time 
passage.  

It is clear that the simulator transforms the relationships of the worker with space. But 
what is lost in fidelity can be gained in terms of problems and control. Indeed, in the 
use of the simulator, separating local and global spaces requires from the subject to 
make the decision of seeking information in the global space. To this end the subject 
leaves the local space in order to be and move in the global space, and then must 
come back in order to perform marking out. These conscious back and forth moves 
do not occur in reality. As a result of this separation, the subject is certainly faced 
with a coordination problem of frames of reference of the two spaces. 

The additional action of back and forth moves between the two spaces is tedious, it 
transforms the reading marking out strategies and favours predictions to decrease the 
number of back and forth moves. But it gives rise to observations for the subject and 
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the educator and consequently can become an object of a reflexive work analysing 
strategies in real and simulated situations. 

Another contribution of the simulator is the possibility of controlled variation offered 
to the educator. The same simulator can give rise to different uses in vocational 
education. The educator has the command of the type of use and of tasks given to the 
students. An example of a didactical situation is briefly presented below. 

5. EXAMPLE OF A DIDACTICAL SITUATION MAKING USE OF THE 

SIMULATOR 

The situation reported here raises the problem of continuing a marking out already 
done without transmitting to the worker information on what has been set out. This 
situation simulates a usual professional problem. Solving this problem requires that 
the worker identify the local space within the global space by coordinating various 
frames of reference including the frame of reference of the plan. 

� Instructions of the situation 

The plan of slab 1 with three boxings out.is given (Fig.13) to the students.  

1) Open the file “slab 1” 
2) As visible, the contour of slab 1 and one boxing out have already been marked.  
3) Mark out the two other boxings out of slab 1.  

Here below is given the plan of slab 1 provided to the students as well as the 
windows local space and global space.  

 

The plan is oriented by the orientation of the writing (from left to right and from top 
to bottom) and consequently imposes a position for reading. It is represented in this 
position on Figure 13. When opening the file “slab 1”, part of the prefabrication table, 
part of the lines and the boxing out R(25, 26) are visible in the local space (Fig.15).  

In figure 14, it is visible that the slab is rotated through 180° with respect to the frame 
of reference of the plan.  



 

CERME 6 36 WG7 

 

 

Fig.15: At the opening of file slab 1 

�  A priori analysis of the situation 

In the marking out activity, the worker’s aim is to reproduce in the mesospace the 
image of the drawing of the fabrication plan. The continuation of the marking out 
requires interpreting the boxing out already marked in mesospace as the image of a 
boxing out of the plan. 

Two cases are possible: 
- Either the plan and its (unfinished) image in the working local space have a 
similar orientation and the boxing out is erroneously considered as R(27,23) 
-  Or measures are taken in order to identify the already drawn boxing out with a 
boxing out of the plan. 

The choice of the dimensions of boxings out in slab 1 is deliberate. The distances to 
the border of the two boxings out R(25 ; 26) and R(27 ; 23) are visually close, 
favouring thus the mistake of the first case in absence of the professional gesture of 
taking information on what has already set out. 

Incorrect interpretation of the already marked boxing out without measuring : R(27 ; 23) 

Two other boxings out must be marked. Here is only considered the case of boxing 
out R(27 ; 55) as the only one likely to lead to feedback. Two procedures for marking 
out R(27 ; 55) are possible:  
- Either through an alignment with R(27 ; 23) by resorting to the only measure 
55 : no feedback. 
- Or by resorting to two measures 27 and 55 without making use of the 
alignment. Once the marking out is done, the absence of alignment of the two marked 

boxings out provides feedback that leads to reject the interpretation of the existing 

boxing out as R(27 ; 23). This leads to the second case which is analyzed below.  

Correct interpretation of the already marked boxing out through checking by measuring: 

R(25 ; 26) 

The coordination between the plan and its unfinished image can be achieved in two 
ways. 
- Real or mental half turn of the plan of slab 1 
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The plan is rotated through 180 ° effectively or in thought to superimpose the image 
on the screen with the rotated plan: the marking out is performed with a 
prefabrication table in the position “open on the right, closed on the left”.  
- Move in the mesospace through resorting to the global space window. 
To keep the prefabrication plan in its privileged position and make it coinciding with 
its image on the screen, it is possible to use F9 key to get access to the global space in 
order to simulate a half turn in this space: the table is then in the position “open on 
the left, closed on the right”. When back in the local space, the boxing out already 
marked is the image of R(25 ; 26). Boxings out can be marked in the same position as 
they are on the plan. 

The situation is aimed to provide multiple opportunities in which checking measures 
of marked objects in mesospace (prefabrication table, lines) lead to an economy in 
marking out. Checking is a critical gesture of building trade as claimed by the 
educators in vocational education. 

� A posteriori analysis of the situation 

As displayed in table 1, only 3 pairs out of 5 resort to measuring on the marking out, 
in order to identify the boxing out.  

without 
measuring 

with measuring Interpreting the 
already marked 
boxing out  R(27,23) 

Pairs 1 and  2 

R(20,21) then R(27,23) 
Pair 6 

R(25,26) 
Pairs 4 and 5 

Table 1: Checking procedures of already marked boxing out 

Let us analyze the checking procedures of the three pairs 4, 5 and 6.  

Pair 4 made two checks by measuring the dimensions of the slab and the dimension 
of the already marked boxing out (26 cm) which is sufficient for identifying the 
boxing out. 

Pair 5 checked only one measure (26 cm) and did a half turn of the  plan to make the 
screen matching the plan. 

Pair 6 drew surprising conclusions: the already marked boxing out is first considered 
as not in the plan, then as the erroneous boxing out R (27, 23). Verbal interactions 
among students V and N of this pair allow us to understand those successive 
conclusions. As pairs 1 and 2, V immediately identifies the already marked boxing 
out as R(27,23). But N insists on measuring. Then he measures one of the dimensions 
of the boxing out and obtains 20 cm as a result of a wrong use of the measuring tape: 
the distance is measured by making coinciding the centre of the boxing out with the 
border of the case of the measuring tape (with width 5 cm in real size). He then 
measures the second dimension in the same way and obtains 21cm. Surprised not to 
find any boxing out of the plan, he resumes each measuring twice or three times. 
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V: it fits nothing. It means that it is already marked, then we must mark out the three 
others. We make one more, that’s it. 

N doubts that there can exist 4 boxings out and asks questions about the use of the 
measuring tape to observer O. He admits that he never used a measuring tape! 

N: the end of the tape, is it at the black mark (corresponding to the clip of the real tape) or 
at the other end? 

O: it is at the black mark as on a real tape… do you know, don’t you? 

N: No, I don’t know, I never used a tape. 

V: Didn’t you?  

The doubt about correct using of the tape as well as the cost of its use in the simulator 
lead them to give up checking the correspondence between measures and dimensions 
on the plan. They come back to the first opinion of V, i.e. identifying the already 
marked boxing out as R(27,23). 

The simulator made possible to face the students with the usual professional problem 
of continuing a marking out, which is a fundamental issue of the professional activity, 
as claimed by the teachers. The simulator revealed that even at the end of the 
vocational training, almost half the students do not resort to checking and among 
those who checked, the use of instruments may cause difficulties. This checking 
professional gesture is not available to all students at the end of the school year. 
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ESTABLISHING DIDACTICAL PRAXEOLOGIES:  

  TEACHERS USING DIGITAL TOOLS IN UPPER SECONDARY 

MATHEMATICS CLASSROOMS   

Mary Billington  

University of Agder 

This paper discusses elements of the didactical work of ordinary mathematics 

teachers using digital tools. The upper secondary school in Norway where the data 

was collected has run an internal project to integrate the Personal Computer into the 

mathematics classroom. Using the Instrumental Approach as a framework this paper 

seeks to describe and interpret elements of teacher practice exploring also the notion 

of instrumental genesis from a teacher perspective. From the analysis of classroom 

observations, interviews, meetings, and study of documents three main didactical 

practices were found to be linked to the introduction of the digital tools: the digital 

notebook, the digital textbook, and the phenomenon of weaving between 

tools/instruments in the classroom. 

INTRODUCTION  

The recent school reform in Norway, Knowledge Promotion 2006, formally 
acknowledges digital competence as one of the five basic skills students should 
acquire and develop in their formal schooling5. This places on schools and individual 
teachers a responsibility to integrate these tools into classroom practice. This study 
looks at the practice of two teachers in a comprehensive upper secondary school in 
Norway who have been using digital tools over a period of five years. In 2007 the 
school joined the project “Learning Better Mathematics”, hereafter LBM6, a 
developmental project initiated by school authorities through a co-operation with 
University of Agder. Data used in this paper was collected at the school’s point of 
entry to the project. The classrooms observed were equipped with a blackboard and a 
projector with screen and set up as “paperless” environments where all students had 
their own laptop PC and when observed rarely used paper and pencil in their 
mathematics lessons: all student work was done on the computer.  

THEORETICAL FRAMEWORK  

The theoretical approach employed emerged in the mid-nineties in France when 
researchers became aware that traditional constructivist frameworks were inadequate 
in the analysis of CAS environments (Artigue, 2002). Artigue claims that this 

                                         
5 Knowledge Promotion (Kunnskapsløftet 2006). These basic skills are given as the ability: to express oneself orally to 

read, to do arithmetic, to express oneself in writing, to make use of information and communication technology 

6 The project is supported by the Research Council of Norway  
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approach is less student centred but provides a wider systemic view also giving the 
instrumental dimension of teaching and learning more focus (Artigue, 2007). The 
approach uses notions both from the Theory of Instrumentation from the field of 
Cognitive Ergonomy, and from the Anthropological Theory of Didactics (ATD 
hereafter) in the field of Mathematics Education (Laborde, 2007).  

Cognitive Ergonomy considers all situations where human activity is instrumented by 
some sort of technology. The theory of instrumentation employs the notion of 
“instrument” and the notion of “instrumental genesis” (Artigue, 2002). The 
instrument has a mixed identity, made up of part artefact and part cognitive scheme. 
It is seen as a mediator between subject and object but also as made up of both 
psychological structures, called schema which organise the activity, and physical 
artefact structures such as pencil, paper, or  digital tools (Béguin & Rabardel, 2000). 
For the individual user, the artefact becomes an instrument through a process of 
instrumental genesis which involves the construction of personal schema or the 
appropriation of socially pre-existing schemes (Artigue, 2002). This process of 
instrumental genesis has two elements, instrumentalisation the process whereby the 
user acts on the tool shaping and personalising the tool, and instrumentation the 
process whereby the tool acts on the user shaping the psychological schema 
(Rabardel, 2003). Instrumental genesis is a process occurring through the user’s 
activity through participation at the social plane. Guin and Trouche (1999) applied 
the Theory of Instrumentation in research in mathematics classrooms, studying the 
process by which the graphic calculator becomes an instrument for the students to 
learn mathematics. They term the teachers’ role in guiding the students’ instrumental 
genesis instrumental orchestration. This is defined as a plan of action having four 
components: a set of individuals, a set of objectives, a didactic configuration and a set 
of exploitation of this configuration (Guin & Trouche, 2002, p. 208).  

ATD on the other hand aims at the construction of models of mathematical activity to 
study phenomena related to the diffusion of mathematics in social institutions, see for 
example (Barbé, Bosch, Espinoza, & Gascón, 2005). The theory analyses human 
action including mathematical activity by studying praxeologies:   

But what I shall call a praxeology is, in some way, the basic unit into which one can 
analyse human action at large. (Chevallard, 2005, p. 23) 

Any human praxeology is constituted of a practical element (praxis) and a theoretical 
element (logos). The praxis has two components, the task and the technique to solve 
the task. The logos also has two components, the technology (or discourse) and the 
theory which provide a justification for the praxis.   

Mathematical knowledge in an educational institution can be described in terms of 
two types of praxeologies: mathematical praxelologies and didactical praxeologies. 
The object of the didactical praxeologies is the setting up of and construction of the 
the mathematical praxeologies. It is these didactic praxeologies, representing teacher 
practice, that are of interest to me in my study. Questions arising are: What 
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constitutes or defines the didactical task, technique, discourse and theory? How are 
the mathematical praxeology and the didactical praxeology entwined? How do the 
existing didactical praxeologies change when digital tools are introduced into the 
mathematics classroom? Laborde’s conclusion that, “A tool is not transparent. It 
affects the way a user solves a task and thinks” (Laborde, 2007, p. 142) should apply 
equally to both teacher and student.  

Research indicates that the interventions of the teacher are critical in relation to 
student learning of mathematical knowledge when digital tools are introduced (Guin 
& Trouche, 1999). The teacher’s instrumental orchestration is part of the didactical 
praxeology. As new tools are introduced, the teacher must develop new didactical 
praxeologies to support the students’ instrumental genesis for the particular tool 
(Trouche, 2004, p. 296). The teacher must also incorporate the new tool into an 
existing repertoire of tools and didactical techniques. Practically in the classroom, 
this involves for the teacher: (1) Organisation of space and time, (2) the choosing of 
the mathematical tasks and the techniques to solve these tasks, and (3) the steering of 
the mathematical activity in the classroom by discourse.   

Aim and research question 

This paper aims to identify features of didactical praxeologies that have been 
established in relation to the introduction of the digital tool and also to describe the 
process of introduction of the digital tool and changes to practice from the teacher 
perspective. The research questions are: What features of the teachers’ didactical 
praxeologies can be identified as pertaining to/originating specifically from the 
introduction and use of the digital tool? Can these features be seen as evidence of a 
process of instrumental genesis for the teachers in relation to the digital tool? What 
factors influence this process?  

This short paper allows for in depth discussion of only some of the features indicated 
above. I have therefore selected features that appear to be of significant importance to 
the teachers when they describe the changing practice in relation to the tool. The 
paper also seeks to describe only commonalities in teacher practice.  

THE EMPIRICAL STUDY 

The teachers, their classes and classrooms   

The two teachers in this study very generously opened their classrooms and gave of 
their time to this researcher. Both were active in initiating the ICT project at the 
school. The ICT project had been established and operated entirely within the school 
and was not part of any external research, design or development project. It is 
therefore claimed that it is the practice of two “ordinary” teachers that is described in 
this paper. In 2005, the school was the only school in the country to conduct final 
examinations in mathematics entirely on the portable PC. 

This part of the study involved classroom visits to two classes of approximately 
twenty five students. The students were studying the subject “Theoretical 
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Mathematics 1” (1T), which is allocated three double lessons a week, each of 90 
minutes duration. These two classes were two of five classes at the school studying 
this subject. Each classroom was equipped with a blackboard and a projector with 
screen. The screen covered part of the blackboard but it was still possible to use the 
blackboard. The technical features of the environment functioned without difficulties 
in the observation period. The classrooms observed presented as “paperless” 
environments as all students had their own laptop PC, leased from the school, and 
when observed rarely used paper and pencil in their mathematics lessons though this 
was permitted. All student work including exercises, notes, rough work was done on 
the computer. I have chosen to refer to this practice as the “digital notebook”. 
Standard paper textbooks were no longer in use as the teachers have developed their 
own digital textbooks, which are made available to the students through a Learning 
Management System (LMS). This practice I refer to as the “digital textbook”. The 
classrooms appeared very orderly as there were no books, papers, rulers or other 
items littering the desks. Each student had a PC and perhaps a bag placed on the floor 
under the desk. The students started work quickly plugging in and turning on the PC, 
contrasting sharply with “normal” classrooms where students take some minutes to 
find notebooks, textbooks, pencils and so on. In the observed lessons only the 
teachers used the projector. Student work was not displayed using the projector.   

Data collection and analysis  

Data collection over a period of four months involved: audio recording of an 
introductory meeting between the school and the university where the two teachers, a 
school leader, two researchers and a project leader from the university were present; 
lesson observation with video recording of eight lessons; audio recording of three 
semi-structured interviews before and after lessons with the teachers; audio- 
recording of seven structured interviews with students (Billington, 2008); and audio 
data from LBM project meetings where the teachers were present and took part in 
discussions. The writer was present at all events, taking field notes. In the classroom 
observations, researchers were present as observers, taking no active part in the 
planning or carrying through of the lesson. Shortly after each event a preliminary data 
reduction using the notes and recordings was made. Passages were also transcribed. 
Later all data was again reviewed, coded and further transcribed. Each data episode 
renders different information helping to build a picture of teacher practice identifying 
didactical praxeologies that would not be there without the digital tool. The meetings 
and interviews tell of the temporal dimension and of the changing nature of the 
didactical praxeologies from the teacher perspective and also reveal the institutional 
influences. Classroom episodes record teacher activity in the classroom revealing 
techniques of instrumental orchestration. Student interviews tell of the students’ 
instrumental genesis and the teachers’ orchestration from the students’ perspective.  
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Analysis of data from meetings and interviews  

The teachers were very keen to discuss the introduction of the digital tool and there 
were clear indications in the data that the teachers saw a process of development in 
their teaching practice.  Examples of such comments were as follows:   

Teacher 1: … and it, it has been, been of course, a long process to come this far, this 
software … 

Teacher 2: But …there is, as such, a remarkable difference from when we started, now… 

Reviewing the data from the meetings and interviews, reoccurring themes emerged.  
These were first categorised under three headings, justification, implementation and 
evaluation. I then attempted to interpret these themes in the light of the theory as 
presented in the table below. In a didactical praxeology, implementation would 
pertain to the praxis while justification and evaluation would pertain to the logos.    

Justification  

Teachers explained why 

“we do what we do and 

continue to do what we do ” 

 Didactical theory – 

 justification of practice  

Implementation 

Teachers explained how 

they organised and carried 

out the project   

Didactical tasks and 

techniques 

Evaluation  

Teachers talked about what they 

identified as affordances and 
constraints of the tool     

Didactical technology (discourse) – 

relating theory to tasks and 

techniques   

Table 1: Interview Themes   

The most common reoccurring themes under implementation were: the digital 
textbook, the digital notebook and teaching techniques in the classroom. There was 
also some discussion input from a school leader, which is relevant to the discussion 
on orchestration.  

Results and discussion of data from meetings and interviews   

As stated above, the teachers referred constantly to the introduction of the digital 
textbook and the digital notebook. Discussion of these two innovative features of the 
implementation occupied much of meeting and interview time. The teachers referred 
to the digital textbook as “Learning Book”7. This digital textbook has replaced the 
usual paper textbook that students would normally buy. It is made available through 
the functioning LMS. Commenting on the digital textbook, the teachers explained 
that as the project progressed they found that the students preferred to read the notes 
that they had made rather than read the paper textbook. As a new syllabus came into 
force this year they decided to make their own digital textbook from scratch.   

Teacher 1: Yes. Totally from scratch, just from the syllabus. Not from any textbook 
….We have taken the syllabus point by point … 

                                         
7 Here literally translated from the Norwegian “læringsbok” 
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Teacher 2:  Now we use the syllabus, and it has been extremely useful to go thoroughly 
into the plans and now we have to make the right choices … we feel we have to make a 
good deal of choices … that we make for the students … 

The teachers have been provoked to return to the mathematical goals in the syllabus 
and build from these. This development is in line with that described by Monaghan 
(2004). The students save this textbook to their own PC and can write in memos, and 
notes. All problems and exercises are also made available through the LMS for the 
students. According to the teachers giving out solutions on the LMS saves time that 
can be used to other things, for example, “we can go around and help”. The students 
also retain these files from year to year whereas previously they sold the textbook at 
the end of the year. In terms of the theoretical framework of ATD this could be 
interpreted as a transposition of mathematical knowledge (Balacheff & Kaput, 1996) 
from the syllabus to a form usable on the PC.   

The second innovation, the digital notebook, a notebook kept by each individual 
student where s/he writes and stores all notes, exercises, and rough work on his/her 
own PC, was also clearly important to the teachers. In fact one teacher gave this 
aspect some credit for the increased enrolment of girls in these maths courses.  

Teacher 1: ...and they (girls) sat on the fence for a year or so. And then a few girls 
signalled to the others, see here, and then the girls joined in force, ….That was when the 
girls saw that this was not about playing games, but this was a way to make it very nice.  
They got everything very systematic, got a way to keep all their notes in order, and very, 
very nice presentation, and this, the girls thought was very ok, and the boys too, now they 
have all their notes from last year and can build on this.  

Choosing supporting materials for the student is a didactical task for the teacher. In 
this case the production of a digital textbook and the promotion of a digital notebook 
are clearly identifiable as innovations in relation to normal practice and could be 
interpreted as an instance of instrumentalisation where the user shapes the tool to 
his/her purpose. Data from the student interviews confirmed that these two 
innovations were important in the students’ instrumental genesis (Billington, 2008). 

This leads to the reoccurring third theme in the meetings and interviews: reflection 
over teaching practice in the classroom. The teachers expanded on the teaching 
philosophy on which they have based the project claiming that they tried to avoid the 
standard structure of theory, example, exercises, and method.  

Teacher 2:  We have had a main principle since we started with this. These textbooks are 
always alike, theory, examples, and then exercises exactly like the example, and then 
examples that are almost the same. As far as possible we try to avoid this. Our 
philosophy is fewer exercises and they can rather sit and struggle with the same exercise 
and if it takes the whole lesson that does not matter.   

Interestingly the teachers did not expose on the wonders of the digital tool per se, but 
rather talked of the teaching possibilities with the tool as illustrated by these quotes.   
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Teacher 1: I have much more influence on my own teaching before... 

Teacher 1: The role of the teacher is a bit …you have greater possibilities, that is what we 
have seen … 

Teacher 2: But, I must say, for my sake, that I have opportunities that I would never had 
had without the PC. 

These possibilities can be interpreted as new didactical techniques. One teacher 
claimed that his teaching had changed since the students have now chosen not to use 
the standard paper textbooks. They discussed the need to focus on understanding 
rather than the reproduction of algorithms. They saw the creation of the digital 
textbook as allowing them more freedom to steer the activities of the classroom in 
line with their philosophy. These reflections I interpret as discourse justifying the 
praxis element of the didactical praxeologies. 

Choosing for students the mathematical tasks, and the techniques and tools to solve 
these tasks, is a didactical task for the teacher. These tools include the textbook as 
well as the digital tools, the software and the hardware. The nature of this didactical 
task has changed for these teachers in the course of the project. They have explained 
how previously they just followed the book, a routine, but now because of the new 
situation they have been forced to make new choices. They now worked together to 
select mathematical tasks themselves rather than following a set up in a book.  

Analysis of data from classroom observation  

In looking at the data from classroom observations I attempted to identify didactical 
praxeologies that were a result of the introduction of the digital tool. In the classroom 
observation data I looked at the teachers’ (1) Organisation of space and time, (2) 
Choice of mathematical tasks and mathematical techniques and physical tools, and 
(3) Steering of activity through discourse, considering these to be three practical 
moments of the didactical praxeologies.    

In the lessons observed, neither the organisation of space or time nor the choice of 
mathematical tasks seemed to be dependent on or unique for a classroom where the 
digital tool of the PC has been introduced. For example, analysis of the time 
disposition in lessons showed a script with recapping, homework correction, new 
theory, and then exercises with approximately 50 – 60 % of the lesson time spent 
with students working alone or in pairs on exercises. Some time however was given 
to the explanation of the technical aspects of performing the mathematical techniques 
with the digital tool. This time allocation varied from lesson to lesson.    

Deviation from a standard classroom environment without digital tools was observed 
in the type of tools used by the students and by the teacher and also in the public 
discourse of the teacher. Choosing the tools for use in the lesson, for the teacher and 
for the students to carry out mathematical tasks is a didactical task. This is an 
ongoing task as choices are made in the planning but also in the conduct of the 
lesson. Two aspects that stood out in the observations were the manner in which the 
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teacher used both the digital tool and the blackboard to support his/her public 
discourse and the manner, which the teacher referred to and talked about using the 
digital tool when describing the mathematical techniques to solve the mathematical 
tasks. This second aspect involves a too broad discussion to take in this paper but will 
be discussed in the thesis of which this work forms a part.   

Results and discussion of classroom observation  

In the classroom observations the teachers used both the blackboard and the screen, 
which was connected to the PC to support their public discourse. One feature that 
emerged frequently in each observed lesson, I term “weaving”. Weaving describes 
the manner in which the teacher moved between the available tools. Three physical 
tools were noted to be in use when the teacher was holding public discourse: the 
blackboard, the PC+screen, and gestures with own body such as tracing out a curve in 
the air. Each of these tools is used in conjunction with the voice and schemas 
(cognitive apparatus). It appeared that in prepared sequences of the lessons the digital 
tool was used but in spontaneous situations, for example when pressed for further 
explanation, the teacher turned to the blackboard or to gestures.   

Discussing this weaving with the teachers, one teacher explained, that “we use what 
is appropriate in the situation”. Teachers seemed to identify affordances and 
constraints of each tool. It appeared that an affordance of the blackboard was that it 
allowed more personal and spontaneous expression by the teacher. It may also be the 
case that such unplanned use of the digital tool requires a high level of skill and 
familiarity with the tool and as such this is a constraint of the tool. In a later instance 
one teacher began to draw a circle on the blackboard freehand but suddenly stopped 
saying; “I have an excellent tool to do this”, and then drew the circle using the 
dynamic geometry software on PC screen instead. Also the mathematical tasks in use 
were standard tasks, which could be solved without the digital tool. Had these tasks 
been more complex or tasks that required the use of digital tools perhaps the response 
of the teacher would have been different.  

CONCLUSIONS AND FURTHER DISCUSSION   

Returning to the research questions, three features of the didactical praxeologies as 
specifically pertaining to and “provoked” by the introduction of the digital tool have 
been identified and discussed: the digital notebook, the digital textbook, and the 
phenomena of weaving between tools/instruments in the classroom. The two features 
that are seen as particularly important by the teachers are the digital textbook and the 
digital notebook. These could be interpreted as examples of instrumentalisation 
whereby the teacher as user has adapted the tool to his/her usage. In the classroom, 
the observation of patterns of inter-dependent mediation between physical tools that 
have been adapted by the teachers, where they weave between blackboard and the 
digital tool in response to the situation, could be interpreted as observations of 
schema or expression of instrumentation as in these cases the tool which is thought to 
be the most appropriate is used.  
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Can the project implementation described above be modelled as a process of 
instrumental genesis for the teachers and is such a modelling helpful in gaining an 
understanding of the situation? Further examination of teacher discourse will provide 
more information about this possible instrumental genesis process though tentative 
findings in this report seem to lead in this direction. Some issues to be discussed in 
relation to such a process are for example: the temporal dimension; if instrumental 
genesis is a process how is it possible to identify the different stages of this process 
for the teacher; and also as to which observations would indicate the formation of 
schema. The notion of instrumental orchestration has been discussed earlier. Is the 
process of instrumental genesis for the teacher also influenced by some constraining 
factors? Comments by the teachers indicated that, for the teachers, the process is 
steered in part on an organisational level by the schooling authorities at school, 
region, and national levels. Financial and policy support from schooling authorities is 
necessary for the survival of the ICT project. In the meetings, the school leader was 
highly supportive of the project and expressed the opinion that when students think it 
(mathematics) is fun, then they use more time on mathematics and so become better 
at it. Enrolment in mathematics has also increased dramatically. However, more 
important to the teachers seemed to be the response of the students. In the categories 
of justification and evaluation the majority of comments by the teachers concerned 
student learning and engagement as illustrated by the comment below.   

Teacher 1: Need to give students a challenge. Students are not educated to work in this 
way. Now they think it is fun. Looking for methods … 

For the teachers in this study, the students’ response to the new situation appears to 
influence the teachers’ use and adaptation of the digital tool. Such comments as 
above also indicate that the teachers are aware of their role in orchestrating their 
teaching to support the instrumental genesis of the student. 
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FRAGMENTATION IN TECHNOLOGY ENHANCHED 

MATHEMATICS EDUCATION 
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This paper, at large, addresses the issue of how to successfully bring into school 

practices the results in technology enhanced mathematics learning obtained at 

research level. The distance among different research teams and between researchers 

and teachers is addressed in terms of fragmentation of the research field. A 

methodology is presented to reduce such fragmentation illustrating a pathway 

followed at the European level in the EC co-funded projects TELMA and ReMath.  

INTRODUCTION 

In the last CERME conference (Cyprus, February 2007) two plenary sessions 
(Ruthven, 2007; Artigue, 2007), drawing from the discussions developed in different 
working groups, highlighted key issues concerning Technology Enhanced Learning 
(TEL) in mathematics.  

According to Ruthven (ibid pg. 52), despite of a generalized advocacy for new 
technologies in education, these have had a limited success in school. As a matter of 
fact, he observes that, even if technologies had some positive impact on the 
instruction of teachers, they remain marginal in classroom practice. This is true, in 
particular, for mathematics, even if, from the beginning, a wide number of 
researchers have been concerned with the study of the opportunities brought about by 
new technologies to the teaching and learning of this discipline (Lagrange, Artigue, 
Laborde, & Trouche, 2003). As a matter of fact, despite the positive results produced 
in a number of experimental settings and the budget invested by many governments 
for equipping schools, actual use of ICT tools in real school environments is still 
having a limited impact. Recent studies witness difficulties encountered by teachers 
in implementing teaching and learning activities mediated by technologies due to 
variables such as working environment, resource system, activity format, curriculum 
script and time economy (Cuban, 2001; Sutherland, 2004). The coordination of such 
variables is necessary in order to develop a coherent use of technological tools and to 
form an effective system. According to Ruthven (ibid pg. 64), this challenge 
“involves moving from idealised aspiration to effective realisation through the 
development of practical theories and craft knowledge”. Drawing from our own 
experience, we identify as a crucial issue the necessity to establish effective 
interactions among the different actors involved in the process, that is researchers, 
teachers, policy makers, curriculum developers, software designers, etc.  

Such a view is coherent with what is reported in (Pratt, Winters, Cerulli & Leemkuil, 
in press) from the perspective of educational technology designers. Authors, making 
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reference to the specific field of games for mathematics education, speak of the 
necessity of a multi-disciplinary approach to design and deployment of technologies 
as opposed to the frequently experienced design fragmentation. Such fragmentation is 
often due to the fact that the different communities involved are not fully cognisant of 
the structuring forces that impinge on each other’s activities. From one hand, 
discontinuities between design and deployment of technological tools impede the 
effective use of such tools in school practice and, on the other hand, the development 
of isolated projects that often do not go beyond experimental settings, do not 
contribute to cumulative knowledge about the design process that could inform future 
work. Pratt et al. advocate the need to integrate key stakeholders in the creation of 
technology enhanced learning tools, as “the problem of design fragmentation remains 
a real impediment to widespread innovation in the field”. They thus state the 
opportunity of creating multidisciplinary teams focusing on the design and 
deployment of educational technology that bring together the perspective of different 
stakeholders: designers, educators, researchers, etc.  

Fragmentation, however, is not only a problem experienced among different 
communities of stakeholders, but it is a problem often experienced also within each 
community. In particular, as highlighted by Artigue (2007) during her plenary speech 
at CERME 6, this is one of the key issues of concern within the community of the 
researchers in mathematics education, and, in particular, within the community of 
researchers focusing on technology enhanced learning in mathematics. Such a 
fragmentation is rooted at theoretical level, as witnessed also by the work of the 
working group 11 of ERME that has been established to discuss such specific issue 
(Prediger, Arzarello, Bosch & Lenfant, 2008). As a matter of fact the theoretical 
background of a research team has an important bearing on the epistemological 
assumptions, the research methodologies, the way in which tools, and, in particular, 
technology enhanced tools, are perceived and used. 

At the European level, where a great variety of different approaches and background 
is present, there is a specific sensibility to the problem of fragmentation and to the 
necessity to find feasible ways to overcome it, since, as observed in (Arzarello, 
Bosch, Gascón & Sabena, 2008) a too wide variety of poorly connected conceptual 
and methodological tools does not encourage consideration of the results obtained as 
convincing and valuable. Moreover, in the specific area of TEL, there is the need of 
designing and implementing tools and methodologies that have a wide scope of 
application and that are not restricted to a particular community or context. For these 
reasons, following the impulse given by projects funded by the European 
Community, efforts have been made to try to overcome such fragmentation.  

Our Institute, together with other research teams, has been involved in European 
research projects concerned with Information Society Technologies (IST) for several 
years and, in particular in Networks of Excellence (NoE) and Specific Targeted 
Research Projects (STREPs). These are two instruments of the European Community 
6th and 7th Research Framework Programmes that aim at promoting research 
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integration and collaboration in several fields including technology enhanced learning 
(more information can be found, for example, at the following URL: 
http://cordis.europa.eu/fp7/home_en.html, accessed September 2008). 

This paper presents some methods and tools, developed within the context of such 
European projects, which have been developed and tested to address the 
fragmentation issues discussed above. 

Firstly we report on the work performed within the TELMA (Technology Enhanced 
Learning in Mathematics) initiative that explored the conditions for sharing 
experience and knowledge among different research teams interested in analysing 
mathematics learning environments integrating technologies, in spite of the 
differences in the theoretical frameworks and in the methodological approaches 
adopted. For this purpose, the notions of “didactical functionality” (Cerulli, 
Pedemonte & Robotti, 2006) and of  “key concerns” - issues functionally important 
(see Artigue, Haspékian, Cazes, Bottino, Cerulli, Kynigos, Lagrange & Mariotti, 
2006) - together with a methodology based on the idea of a “cross experiments” 
(Artigue, Bottino, Cerulli, Georget, Mariotti, Maracci, Pedemonte, Robotti & 
Trgalova, 2007; Bottino, Artigue & Noss, 2008) were defined and conceptualized as 
concrete methods to address the problem of fragmentation.  

Secondly, we give account of some of the outcomes of the ReMath project that, 
building on the results of the TELMA project, has addressed the fragmentation 
problem from the perspective of the design, implementation, and in-depth 
experimentation of ICT-based interactive learning environments for mathematics, 
thus involving not only researchers but teachers and technology designers as well. In 
particular, within the ReMath project, the problem of how to effectively support 
collaboration in pedagogical planning has been faced. Efforts have been made to 
provide a solid basis for accommodating the different perspectives adopted, for 
analysing the factors at play, and also for understanding the initial assumptions and 
theoretical frameworks embraced. A web-based system, the Pedagogical Plan 
Manager (PPM), was developed to support researchers, tool designers and teachers to 
jointly design and/or deploy mathematics pedagogical plans involving the use of 
technological tools (Bottino, Earp, Olimpo, Ott, Pozzi & Tavella, 2008).  

Summing up, in the following sections, we delineate the process that has brought us 
to afford the problem of the fragmentation of approaches and frameworks, in the field 
of mathematics teaching and learning mediated by technologies, from different but 
complementary perspectives. 

A COLLABORATIVE METHODOLOGY FOR NETWORKING RESEARCH 

TEAMS IN TECHNOLOGY ENHANCED LEARNING IN MATHEMATICS 

NoEs have been established by the European Commission within the last Framework 
Research Programmes as instruments to promote integration and collaborative work 
of key European research teams and stakeholders in given fields. In particular, the 
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network of Excellence Kaleidoscope was established and funded with the aim of 
shaping the scientific evolution of technology enhanced learning (see also: 
http://www.noe-kaleidoscope.org, accessed September 2008). Since each knowledge 
domain raises specific issues either for learning or for the design of learning 
environments, within Kaleidoscope a number of different joint research initiatives, 
covering a wide range of domains, have been carried out. Among these, TELMA 
initiative was specifically focused on Technology Enhanced Learning in 
Mathematics. It involved six European teams1 and had as its main aim that of 
building a shared view of key research topics in the area of digital technologies and 
mathematics education, proposing related research activities, and developing 
common research methodologies.  

In TELMA, each team brought to the project particular focuses and theoretical 
frameworks, adopted and developed over a period of time. Most of these teams have 
also designed, implemented and experimented, in different classroom settings, 
computer-based systems for supporting teaching and learning processes in 
mathematics. It was clear from the beginning that, to connect the work of groups that 
have different traditions and frameworks it was necessary to develop a better mutual 
understanding and to find some common perspectives from which to look at the 
different approaches adopted. It was also necessary to develop a common language 
since the same words were sometime used with different meanings by each team, 
causing misunderstanding and hindering productive collaboration. Moreover, it 
became clear that the theoretical assumptions made by each team, were often implicit 
and thus not accessible to the others.  

The notion of didactical functionalities 

In order to overcome these difficulties it was decided to focus the work of TELMA 
on the theoretical frameworks within which the different research teams face research 
in mathematics education with technology. A first level of integration has been then 
pursued through the definition of the notion of didactical functionality for 
interpreting and comparing different research studies (Cerulli, Pedemonte & Robotti, 
2006). Such notion has been used as a way to develop a common perspective among 
teams linking theoretical reflections to the real tasks that one has to face when 
designing or analysing effective uses of digital technologies in given contexts. The 
notion of didactical functionality is structured by three inter-related components:  

a set of features/characteristics of the considered ICT-tool; 
an educational aim; 
the modalities of employing the ICT-tool in a teaching/learning process to achieve 

the chosen educational aim. 
The different didactical functionalities designed and experimented by each team have 
been compared trying to delineate how different theoretical backgrounds can 
influence the design of an ICT-based tool, the definition of the educational goals to 
be pursued, and the modalities of use of the tool to achieve such goals. At the 
beginning, this analysis was conducted on the basis of a selection of papers published 
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by each team. This approach, even if useful, was considered not sufficient to enter the 
less explicit aspects of the research work of each team. For this reason, TELMA 
researchers decided to move toward a strategy that could allow them to gain more 
intimate insights into their respective research and design practices. This strategy is 
based on the idea of ‘cross-experiments’ and on the development of a methodological 
tool for systematic exploration of the role played by theoretical frames.  

The cross-experiments methodology 

The idea of cross-experiments was developed in order to provide a systematic way of 
gaining insight into theoretical and methodological similarities and differences in the 
work of the various TELMA teams. This is a new approach to collaboration that 
seeks to facilitate common understanding across teams with diverse practices and 
cultures and to elaborate integrated views that transcend individual team cultures. 
There are two principal characteristics of the cross-experiments project implemented 
within TELMA that distinguish it from other forms of collaborative research:  

the design and implementation by each research team of a teaching experiment 
making use of a ICT-based tool developed by one of the other team involved;  

the joint construction of a common set of questions to be answered by each team in 
order to frame the process of cross-team communication. 

Each team was asked to select an ICT-tool among those developed by the other 
TELMA teams (Figure 1). This decision was expected to induce deep exchanges 
between the teams and to make visible the influence of theoretical frames through 
comparison of the didactical functionalities developed by the designers of given tools 
and those implemented by the teams experimenting the tools. Moreover, in order to 
facilitate the comparison between the different experimental settings, it was also 
agreed to address common knowledge domains (fractions and introduction to 
algebra), to carry out the teaching experiments with students between the 5th to 8th 
grade, and to perform them for about the same amount of time (one month). 

Guidelines (Cerulli, Pedemonte & Robotti, 2007) were collectively built for 
monitoring the whole process: from the design and the a priori analysis of the 
experiments to their implementation, the collection of data and the a posteriori 
analysis. Beyond that, reflective interviews (using the technique of "interview for 
explicitation" (Vermesch & Maurel, 1997)) were a-posteriori organized in order to 
make clear the exact role that theoretical frames and contextual characteristics had 
played in the different phases of the experimental work, either explicitly or in a more 
naturalized and implicit way. 
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Figure 1: Aplusix, developed by Metah, was experimented by ITD and UNISI. Arilab, 

developed by ITD, was experimented by LIG, ETL-NKUA and DIDIREM. E-Slate, 

developed by ETL-NKUA was experimented by IoE.   

It was hypothesized that, for each team, the use of a non familiar (alien) tool would 
have made problematic, thus visible, design decisions and practices that generally 
remain implicit when one uses tools developed within his/her research and 
educational culture, and that this visibility would have been increased by the 
guidelines' request of making explicit the choices performed.  

The cross experiments provided interesting insights on the complexities involved in 
designing and implementing mathematics learning environments integrating 
technology and allowed to make some reflections (see also: Bottino, Artigue & Noss, 
in press; Cerulli et al., 2008; Artigue et al. 2007). 

The first reflection was on the conditions that can facilitate the sharing of experience 
and knowledge among researchers in spite of the differences in the theoretical 
frameworks adopted. Theoretical frameworks, while influencing design and analysis 
of a teaching experiment, were far from playing the role they are usually given in the 
literature. As a matter of fact, in the design of the cross-experiments, theoretical 
frameworks acted mainly as implicit and naturalized frames, and more in terms of 
general principles than of operational constructs. Even if some variations could be 
noticed, all the teams experienced a gap between the support offered by theoretical 
frames and the decisions to be taken in the design process. The acknowledgment of 
such a gap can be a starting point for establishing a better communication channel not 
only among researchers but also with teachers. As a matter of fact, a marked 
emphasis on theoretical assumptions is often too far from the practical needs of 
teachers. For this reason it is important to establish the exact role that theoretical 
frameworks play in the planning of an effective teaching experiment. In particular, it 
was found that researchers tend to overestimate such role, thus making the distance 
with teachers’ needs even bigger. A methodology aimed at making explicit, and at 
justifying, the choices made, proved a useful tool for reducing communication 
disparities.  
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A second observation concerns the understanding of what it means to adapt an ICT 
based tool to a context different from the one it was designed for. In our work this 
was accomplished by experimenting in each country tools developed in other 
countries by different teams. Thanks to the adopted methodology and to the request 
of making explicit assumptions, choices and decisions taken, it was possible to 
individuate some variables that strongly affect the development of teaching 
experiments involving the use of technologies. For instance, the attention paid to 
different research priorities (e.g. the detailed organization of the milieu; the social 
construction of knowledge; the teacher’s role) and to local constrains (e.g. curricular; 
institutional; cultural) appeared to be crucial. Such variables are to be deeply 
considered and made explicit in the communication with teachers to effectively 
support them to adapt research experiments to their teaching contexts. In other words, 
researchers should find ways to make explicit all the key assumptions at the basis of 
their experiments. Of course, this is not enough, since, as suggested in (Pratt, 
Winters, Cerulli & Leemkuil, in press), it is also necessary to promote a more strict 
collaboration between researchers, tool designers and teachers also at the level of the 
design and the implementation of ICT based tools, and in the planning of the 
experiments. 

Taking into account these needs, and on the basis of the results obtained in TELMA, 
a new European project was thus developed, involving the same research teams: the 
ReMath project (IST - 4 – 26751 - STP). In this project the issue of collaboration 
between different stakeholders was addressed by developing a specific tool to be used 
to design teaching experiments involving ICT based tools.  

A TOOL TO SUPPORT THE COMMUNICATION OF DIFFERENT 

STAKEHOLDERS IN THE PLANNING OF LEARNING ACTIVITIES 

INVOLVING TECHNOLOGY  

The TELMA project provided a strategy for reducing the difficulties of 
communication among researchers; this strategy proved to be quite effective, thus it 
was decided to adapt it to the needs of the ReMath project where communication in a 
wider community, including software designers, researchers and teachers, has been 
addressed.  

The Remath project, which is still in progress, has two main goals: the development 
of ICT-based tools for mathematics education at secondary school level and the 
design and experimentation, in different contexts, of learning activities for classroom 
practice involving the use of such tools (see: http://remath.cti.gr/default_remath.asp; 
accessed September 2008). In order to pursue this last goal, a cross-experiment 
methodology, widening the one developed by TELMA, has been adopted. A tool, the 
Pedagogical Plan Manager (PPM), has, thus, been developed to support pedagogical 
planning and the communication of the different stakeholders involved in the activity. 
In particular, such tool has been developed to support communication between 
researchers and teachers when planning learning activities involving ICT tools. The 
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idea was originated by the analysis of some the difficulties pointed out by researchers 
in the wide field of learning design (Koper & Olivier, 2004). In this context some 
crucial questions had specifically called attention to: how ICT may be usefully 
employed in supporting the design phase of an innovative learning process? How is it 
possible to make explicit those pedagogical and contextual reflections that are at the 
heart of the design of a learning activity and which is the impact of the adopted 
theoretical frameworks? How is it possible to facilitate dialogue and transfer between 
teachers, researchers, and software designers? 

The idea was that of developing a web-based tool to be used by researchers and 
teachers to design teaching experiments concerning the educational mathematics 
software developed in the project. Such tool had to be able to give account of the 
different issues considered important by the ReMath community (e.g. theoretical and 
pedagogical assumptions; characteristics of the context in which a teaching 
experiment has to be carried out, etc.) and to adapt to different contexts and culture. 

Meeting such requirements and accounting for the diverse perspectives and concerns 
that the project brings together, clearly, called for a design solution offering 
considerable expressiveness and a high degree of structural flexibility. To achieve 
such goal a model for pedagogical scenarios which is both flexible and expressive 
was developed (Bottino et al., 2008). The PPM is based on such model.  

Pedagogical scenario is seen as a dynamic and modular vehicle for pedagogical 
planning able to foster consideration for, reflection on, and understanding of critical 
pedagogical and contextual aspects entailed in the design and enactment of learning 
activities. The model features a number of attributes for expressing (among other 
things) the reason why an intervention is proposed, the theoretical and didactical 
framework in which it is positioned, the innovation it is intended to introduce and the 
way it is to be implemented. The aim is to bring to light key (often implicit) issues 
involved in the designing process and to foster reflection on the adopted solutions. 

The attributes of the pedagogical scenario are organized in a schema of descriptors 
which, when instantiated with data (open text and multimedia), form a pedagogical 
plan. Figure 2 shows one of the interfaces of the PPM devoted to the editing of 
pedagogical plans. For space reason, we cannot provide here a detailed description of 
the model adopted and of the prototype thus implemented (more details can be found 
in Bottino et al., 2008). Outputs of its use are currently under examination and will be 
further analysed at the end of the ReMath project (May 2009). 
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Figure 2: interface of the PPM supporting the editing of pedagogical plans. 

CONCLUSIONS 

Software designers, researchers and teachers may have different needs, different 
constrains, and different perspectives. This can be an obstacle for the effectiveness of 
technology enhanced learning in mathematics, also in terms of impact in school 
practice. The projects briefly presented tried to develop a coherent methodology for 
reducing the distance between the different stakeholders. In TELMA it was addressed 
the problem of networking research teams with different backgrounds and approaches 
by means of a specific collaborative methodology. In ReMath such methodology was 
extended, also through the development of a specific web-based tool, to involve all 
the stakeholders in the design, development and deployment of teaching and learning 
activities involving the use of technologies.  

The outlined pathway includes researcher’s explicitation of the actual role played by 
theoretical frameworks in the effective use of ICT tools and the individuation of the 
gap between theory and practice. This can help reducing the distance with teachers. 
The tool for pedagogical planning developed in the ReMath project is aimed at the 
same goal by involving teachers, from the beginning, also in the design of teaching 
activities with ICT-based tools. Such activities are seen as integral part in the design 
process of a technology. In this way we believe it can be possible to develop 
communities of practice that bring together teachers and researchers so that teaching 
practice and research could nurture one from each other favouring a better impact of 
technology enhanced learning in school practice.   
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NOTES 

1. TELMA teams (whose acronyms are indicated in brackets) belong to the following Institutions: Consiglio Nazionale 

delle Ricerche, Istituto Tecnologie Didattiche, Italy (ITD); Università di Siena, Dipartimento di Scienze Matematiche 

ed Informatiche, Italy (UNISI); University of Paris 7 Denis Diderot, France (DIDIREM); Grenoble University and 

CNRS, Leibniz Laboratory, Metah, France (LIG); University of London, Institute of Education, United Kingdom (IOE); 

National Kapodistrian University of Athens, Educational Technology Laboratory, Greece (ETL-NKUA). 
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DYNAMIC GEOMETRY SOFTWARE: THE TEACHER’S ROLE 

IN FACILITATING INSTRUMENTAL GENESIS 

Nicola Bretscher 

King’s College London 

In the UK, use of dynamic geometry software (DGS) in classrooms has remained 

limited. Whilst the importance of the teacher’s role is often stated in dynamic 

geometry research, it has been seldom elaborated. This study aims to address the 

apparent deficiency in research. By analysing teacher/pupil interactions in a DGS 

context, the intention is to identify situations and dialogue that are helpful in 

promoting mathematical thinking. The analysis draws on an instrumental approach 

to describe such interactions. Elements of instrumental genesis are distinguished in 

pupils’ dialogue and written work which suggest strategies that teachers can employ 

to facilitate this process.  

Keywords: teacher’s role, dynamic geometry, instrumental genesis 

INTRODUCTION 

This study aims to elicit teaching strategies that teachers might employ in their 
classrooms to help pupils engage constructively with dynamic geometry software. 
Currently DGS has made little impact on classrooms in the UK. Research has tended 
to focus on elaborating situations of innovative use and student/machine interaction. 
This study hopes to re-focus on “the teacher dimension” (Lagrange et al, 2003). The 
author carried out this study in the role of a practitioner-researcher with a high ability 
year 8 class. Whilst the class cannot be deemed to be representative, nevertheless it is 
an ‘ordinary classroom’ and therefore this study can claim to respond to the need for 
research into how dynamic geometry software is integrated into ‘the regular 

classroom’ (Gawlick, 2002). 

DGS – A CLASSROOM FAILURE? 

Dynamic geometry software (DGS) appears to be following the cycle of oversell and 
high expectations, ending in limited classroom use identified by Cuban (2001) as a 
general pattern for technological innovation in education. Research in mathematics 
education generally presents DGS as a potentially important and effective tool in the 
teaching and learning of geometry (see for example Holzl, 1996; Marrades and 
Gutierrez, 2000; Mariotti, 2000). In their survey of geometry curricula, Hoyles et al 
(2001) state that although most countries seek to integrate ICT into teaching 
geometry, there is little explicit influence of ICT in classrooms. In the UK, despite 
recommendations in the Key Stage 3 Mathematics Framework (DfEE, 2001) for 
using DGS to develop geometrical reasoning, classroom use has remained limited 
(Ofsted, 2004). Syntheses of research findings generally conclude by favouring the 
strong potential of ICT but give few explanations for the contrasting poor reality of 
classroom use (Lagrange et al, 2003). 
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THE ABSENT TEACHER 

A criticism of educational policy and discourse on ICT is that the predominant focus 
has been on technology rather than education (Selwyn, 1999). The picture painted by 
Lagrange et al (2003) of research on ICT within mathematics education is of a field 
dominated by “publications about innovative use or new tools and applications” 
where issues of the integration of technology into ordinary classrooms have been 
largely neglected. In particular, the voice and role of the teacher has been notably 
absent. Balacheff (1993) found that there was essentially no research focusing “on 
teachers and the explanation they might expect about a didactical interaction”. Ten 
years later, Lagrange et al (2003) still found that very few papers considered what 
they termed “the teacher dimension”, rather that there was a tendency for research to 
make “an implicit assumption that the transfer of innovative situations of use… 
would provide the teacher with sufficient material for integration”. DGS is no 
exception: in his review of research on dynamic geometry software, Jones (2002) 
suggests that future research could usefully focus on teacher input and its impact, 
amongst other issues.  

This study was designed with these issues in mind. The instrumental approach, 
described in the next section, was used to analyse teacher/pupil interactions in order 
to elicit teaching strategies which might facilitate pupils’ instrumental genesis.  

THEORETICAL BACKGROUND 

Instrumental genesis is described as the process by which an artefact is transformed 
into an instrument by the subject or user (Guin and Trouche, 1999). An artefact is a 
material or abstract object, given to a subject. An instrument is a psychological 
construct built from the artefact by the subject internalising its constraints, resources 
and procedures (Guin and Trouche, 1999). Once the user has achieved 
instrumentalisation, he is able to reinterpret or reflect on the activity he is engaged in. 
Drijvers and Gravemeijer (2005) describe instrumental genesis as the “emergence 
and evolution of utilisation schemes”. A utilisation scheme is a “stable mental 
organisation” including both technical skills and supporting concepts as a method of 
using the artefact for a given class of tasks (Drijvers and Gravemeijer, 2005). The 
interrelation between machine techniques and concepts seems important since 
Drijvers and Gravemeijer (2005) found that the apparent technical difficulties that 
students had often had a conceptual background. 

The instrumental approach has been mainly developed and applied within the context 
of computer algebra software (Drijvers and Gravemeijer, 2005) and there remains a 
question over how general its applicability is. Drijvers and Gravemeijer (2005) cite 
two examples where the instrumental approach has been applied to DGS. Thus it 
seems instrumental genesis may be an appropriate tool to analyse observations of 
student behaviour within a dynamic geometry environment. 
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RESEARCH CONTEXT AND METHODOLOGY 

This study was conducted as part of a Best Practice Research Scholarship-funded 
project on using DGS as a resource for teaching geometrical proof. Much of the 
previous research on DGS has focused on pupils in upper secondary school (Jones, 
2000). It has been suggested that more research is needed on the impact of dynamic 
geometry software on students in lower secondary school (Marrades and Gutiérrez, 
2000). The decision to conduct the research with the researcher’s year 8 class was 
partly influenced by this consideration. Since the pupils were in year 8, there was an 
added advantage that they were not subject to public examinations, the curriculum is 
less pressurised and therefore ethical considerations about deviating from schemes of 
work were somewhat reduced. The school in which the research was conducted is a 
private day school for girls. The research was conducted with the highest attaining set 
in year 8, containing 23 pupils, with girls expected to achieve levels 7 or 8 at Key 
Stage 3 [1]. In common with several other research studies, this was seen as an 
advantage since students judged to be above average in mathematical ability are most 
likely to be able to engage with proving processes and therefore allow meaningful 
data collection to take place (Jones, 2000; Marrades and Gutiérrez, 2000). 

In this paper, I consider data drawn from a sequence of 5 lessons in which pupils 
were engaged in investigating a series of construction problems in pairs using Cabri 
Geometre. The tasks were based upon the Phase 1 and 2 tasks developed by Jones 
(2000) and were intended to progress in difficulty. Each task consisted of a figure 
which the pupils were to construct in Cabri so that it remained constant under drag. 
The methods for constructing a figure were linked and developed from previous 
problems to encourage the pupils to examine how additional constraints might affect 
the resultant shape. They were prompted to say what the resultant shape was and, 
importantly, how did they know? The point of the teaching sequence was to 
encourage pupils to justify or prove these assertions.  

The pupils were asked to choose a construction of their choice and produce a Power-
point presentation on why their construction had worked which was presented to the 
class. Printouts of the pupils’ Power-point presentations and audiotape recordings of 
their presentations to the class form one part of the data collected. During the lessons, 
the researcher carried an audiotape so that any teacher/pupil interactions would be 
recorded: these recordings form another part of the data collected. After the lessons, 
brief field-notes were made on the major events in the lesson.  

The initial stage of data analysis concerned the transcription of tape-recordings made 
during lessons. Using field notes, the tapes were broken down into major events or 
“episodes” (Bliss et al, 1996). In the sense described by Bliss et al (1996) these 
episodes had “an internal coherence”; they were complete conversations which 
allowed the researcher to “interrupt momentarily, for the purpose of analysis, the 
‘relentless flow of the lesson’”. A second stage of analysis involved going through 
the transcripts and pupils’ work making notes, identifying critical incidents that build 
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towards detailed accounts of practices. The final analysis was based on a grounded 
approach using narrative techniques (Kvale, 1996) which moved back and forth 
between the theoretical viewpoint developed in the review of literature and the 
pupils’ work and transcribed episodes. Each step in this process eased the transition 
from emotionally involved participant towards objective observer. Using the concept 
of instrumental genesis to achieve a “rich and vivid description of events” (Hitchcock 
and Hughes, 1995), this study hopes to tease out the threads of a tapestry of complex 
social interactions to see if strategies for promoting mathematical thinking can be 
discerned in the weave. 

ANALYSIS 

From the analysis of data, three teaching strategies emerged for facilitating pupils’ 
instrumental genesis in Cabri. Using excerpts from teacher/pupil dialogue, these 
strategies are described below, where T represents the teacher throughout. 

Unravelling functional dependency in DGS 

In common with other students, Pupils H and C experienced difficulty with 
specifying where they wanted objects to intersect when attempting to construct two 
circles sharing the same radius. They constructed the first circle successfully and 
correctly placed the centre of the second circle on its edge. The difficulty arose when 
they tried to adjust the size of the second circle so that its edge would pass through 
the centre of the first circle, thus ensuring that they would share a radius. The 
problem was that they made it look like the edge of the second circle passed through 
the centre of the first circle rather than specifying to Cabri that the circle should go 
“By this point” – as the Cabri pop-up phrase suggests if you hover over the required 
centre point. Although their Cabri drawing looked successful, when it was subjected 
to a drag-test, the circles changed size in relation to each other instead of maintaining 
their pattern: 

T: Yeahhh. That’s it because you see this computer program will only do exactly what 
you tell it so if you just make it look like it… sort of, yeah. I’m going to be able to 
change the shape of your circle so if you tell it, look…. 

crackle:  teacher using the computer to show how the circle can still be messed up. Then 
creates a new one “by this point” method to show the difference 

T: Ok now try and mess it up, you try and mess it up     now 
mess up one of the other circles yeah… ok so… 

There follows some unintelligible comments and crackling then… 

H: You think a computer’s smart but it’s not, you can’t just sit there and watch it do it 
for you, you have to know what to do and you have to tell it to do it so it’s like a 
something…. like it’s like a lightswitch. 

The difficulties that students have in coming to terms with the concept of functional 
dependency in geometry exemplifies Drijvers and Gravemeijer’s (2005) conception 
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of utilisation schemes in which the technical and conceptual elements co-evolve.  
Pupil H articulates this point very clearly: “you have to know what to do and you 
have to tell it to do it”. Mathematical knowledge is knowing “what to do” and 
technical knowledge is required in order to tell the computer to do it. The gap in H 
and C’s knowledge was an appreciation of the functional dependencies inherent in 
Cabri: on the one hand, a conceptual gap of the necessity of specifying the required 
geometrical relationship and, on the other hand, a gap in the technical knowledge of 
how to specify the relationship using Cabri. The teacher explains the need to specify 
the geometrical relationship: the “computer program will only do exactly what you 
tell it”. The teacher goes on to illustrate the technical knowledge of how to specify 
the relationship by contrasting the construction ‘by eye’, which could still be messed-
up, to the “by this point” version in which the geometrical relationships remained 
intact. 

Pupil K had similar difficulties to H and C: although she seemed to be clear about 
how the circle should be positioned, she appeared unaware of the necessity to specify 
to Cabri that the circle should go “By this point”. Again the teacher makes the 
technical elements explicit: 

Ok. Keep your hand …[K: uhuh] yeah? So if you actually put it on the point and say 
I want it “by this point” that’s how the comp… that’s the only bit of IT you’re using. 
[K: But that’s…] That’s the only knowledge…IT knowledge you’ve used. And really 
then you’ve had to tell it to do that haven’t you? 

In this case, the teacher is more direct in making the functional dependencies explicit, 
by guiding the pupil’s construction and referring to the software language “by this 
point”. The teacher even describes this technical knowledge of how to specify the 
relationship as “IT knowledge”, unravelling it from the mathematical knowledge of 
the geometrical relationship. The teacher again refers to the conceptual necessity of 
specifying the relationship: “you’ve had to tell it to do that”. Drijvers and 
Gravemeijer (2005) describe instrumental genesis as the “emergence and evolution of 
utilisation schemes, in which technical and conceptual elements co-evolve”. The role 
of the teacher in supporting instrumental genesis is partly in making the technical and 
conceptual elements explicit. In the case of dynamic geometry software such as 
Cabri, the role of the teacher is to unravel the notion of functional dependency by 
highlighting the necessity of specifying the required geometrical relationship and the 
technical knowledge of how to specify the relationship. 

Exploiting dynamic variation to highlight geometric invariance 

All the figures presented to the pupils for construction were based on the initial 
construction of a line which was apparently horizontal. Of course, there is no 
geometrical reason for the line to be horizontal, the figures had been presented in this 
way purely for neatness and it had not been given a second thought, until the teacher 
noticed that all students appeared to be constructing intentionally horizontal lines. 
The pupils had discovered that by pressing the “shift” key whilst constructing a line, 
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the line would snap to the horizontal. According to the pupils, a similar feature of 
“snapping to a grid” occurs in a piece of completely unrelated software, which was 
how the discovery was made. Pupil K was insistent that the line should be horizontal: 

T:  Why do you always insist on that being horizontal? Does it matter if it…. 

The teacher draws attention to the pupil’s misconception and, by dragging, attempts 
to convey that the horizontal constraint is artificial, that it can be broken without 
disturbing the figure under construction. As the pupils were presenting their work to 
the class, it became clear that all groups had produced figures with horizontal lines. 
The teacher again attempted to question this feature of their constructions but this 
time in a whole class context. Pupil MC was asked to reconstruct her solution to 
Problem 2 (a perpendicular bisector) without starting from a horizontal line. She did 
this successfully on an interactive whiteboard so that the whole class could see. She 
then dragged the figure, directed by the teacher, changing its orientation to show its 
invariance, including the situation with the initial line being horizontal. The teacher 
exploits dynamic variation to highlight the geometric invariance of the construction 
in order to help pupils differentiate between geometrical relationships which were or 
were not crucial. 

A similar situation occurred when a pair of pupils, MC and ML, successfully 
completed the construction leading to a square (Problem 4). They both excitedly told 
the teacher that the shape they had produced was a diamond. The teacher dragged 
their construction so that the base of the shape was horizontal, at which point they 
both concurred that the shape was a square. Upon dragging it back to the original 
position, ML in particular returned to her previous statement that it was a diamond. 
Repeated dragging, more and more slowly to emphasise the continuous 
‘transformation’ of the shape, convinced both students that the shape was, in fact, 
always a square. Again the teacher’s strategy is to demonstrate the potential of the 
software, by exploiting dynamic variation to demonstrate the invariance of the 
constructed shape. Recognising the potential of the software and making its 
affordances explicit to pupils is a key element in supporting instrumental genesis.  

Making connections between DGS and pencil-and-paper  

Pupil N had constructed a rhombus but, as in the examples in the previous paragraph, 
had difficulty identifying the shape due to its unfamiliar orientation. The teacher 
employs dynamic variation to convince pupil N that the shape is indeed a rhombus 
but then continues the explanation on paper: 

N: Is this a rhombus? But a rhombus supposed to be like tilted so…? 

Teacher manipulating the diagram on screen 

N: Oh so it can be, it can be any way up and it [T: Oh!] would still be a rhombus.  
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T: Well yeah… [N to another pupil: Well it is a rhombus.] it’s like, look, this is a well 
no that’s not. This a rectangle isn’t it? Ok, it’s still a rectangle. It’s still a rectangle. 
However much I turn it, it’s still a rectangle. Yeah, ok? 

Diagram of rectangle drawn on paper and then the paper twisted and turned as a 
demonstration that orientation doesn’t alter the shape. 

Guin and Trouche (1999) suggest that teachers should highlight the constraints and 
limitations of the software to students in order to support their instrumental genesis. 
In these cases, the teacher is in fact using the dynamic nature of the Cabri software to 
highlight the constraints and limitations of the paper-and-pencil environment, 
exposing a misconception and thereby supporting the pupils’ instrumental genesis in 
the more traditional medium. In the case of the tilted rhombus, the teacher sketched a 
rectangle on paper in order to further illustrate the concept that orientation does not 
affect the nature of the shape. This sketch was done on paper at the time mainly 
because it was quicker than constructing the shape on Cabri. The teacher’s return to 
the paper-and-pencil environment is important because it makes a connection 
between the two environments: although dynamic variation makes it easier to 
appreciate that orientation does not affect the shape, the concept still holds in a paper-
and-pencil environment. The return to paper-and-pencil is thus an attempt by the 
teacher to “build connections with the official mathematics outside the microworld”, 
a responsibility which Guin and Trouche (1999) identify as being a crucial part of the 
teacher’s role. 

DISCUSSION 

From the sequence of lessons, three teaching strategies have been distilled that serve 
to facilitate pupils’ instrumental genesis in a DGS context. These strategies are 
clearly not exhaustive: exploiting anomalies of measurement in Cabri such as 
rounding errors might be another way to promote mathematical thinking, for 
example. These strategies are specific to DGS in general and Cabri Geometre. They 
are also analogous to teaching strategies used in other contexts. Guin and Trouche 
(1999) suggest that teachers should highlight the constraints and limitations of the 
software to students: in the case of Derive, the discrete and finite nature of the 
software. Similarly, a dynamic geometry environment such as Cabri is only a discrete 
model of Euclidean geometry, despite its continuous appearance. All tools and 
resources have constraints and limitations. In the case of paper and pencil, a 
limitation is the static nature of the environment. Thus strategies such as those 
identified in this paper may apply to any teaching resource. In a sense, the teaching 
strategies mentioned here essentially highlight general principles of mathematics 
teaching applied to a specific context, in this case DGS. The resource provides a 
context for learning but cannot teach. The focus of research needs to shift away from 
the context, towards teachers and the teaching strategies they may employ in order to 
aid pupils’ instrumental genesis. In this way research on ICT may avoid the criticism 
that the predominant focus has been on technology rather than education. 
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NOTES 

1. Key Stage 3 covers the first three years of secondary schooling in England: Year 7 (age 11-12), Year 8 (age 12-13) 

and Year 9 (age 13-14). Average attainment at the end of KS3 is at level 5/6. Level 8 is the highest level possible in 

maths at KS3. 
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STUDENT DEVELOPMENT PROCESS OF DESIGNING AND 

IMPLEMENTING EXPLORATORY AND LEARNING OBJECTS  

 

Chantal Buteau & Eric Muller 

Department of Mathematics, Brock University, St. Catharines (CANADA) 

 

In 2001 a core undergraduate program, called Mathematics Integrated with 
Computers and Applications (MICA) was introduced in the Department of 
Mathematics at Brock University, Canada. In this program that integrates evolving 
technologies, students complete major projects that require the design and 
implementation of 'Exploratory and Learning Objects' (ELO). In this paper, we 
propose schematic representations and descriptions of the student development 
process as s/he completes an ELO project. We highlight the important role that ELO 
interfaces play in this development process.  

Keywords: Exploratory and Learning Objects (ELO); student development process; 
students designing and implementing ELO; university mathematics education. 

 

INTRODUCTION 

There have been a number of publications (Muller, 1991, 2001; Muller & Buteau, 
2006; Buteau & Muller, 2006; Pead et al, 2007; Muller et al., forthcoming) about the 
long-term implementation of evolving technology use in undergraduate mathematics 
education at Brock University (Canada) that started in the early 80s. The most recent 
development is the 2001 implementation of the core undergraduate mathematics 
program called Mathematics Integrated with Computers and Applications (MICA). 
Two of the program aims are to (1) develop mathematical concepts hand in hand with 
computers and applications; and (2) encourage student creativity and intellectual 
independence (Brock Teaching, 2001). Three innovative core courses, called MICA I, 
II, III, were implemented in addition to a review of all traditional courses to 
incorporate the MICA program aims. Results of a 2006 MICA student survey and an 
enrolment analysis covering the years 2001 to 2006 are reported in Ben-El-
Mechaiekh et al. (2007). Highlights include 

Students overall rated the use of technology in their mathematics courses as 
positively beneficial (77.74% of responses; 79.36% when restricted to mathematics 
majors). (p.10) 

and, furthermore, 

... students overwhelmingly rated the use of technology in [MICA] courses as 
[positively] beneficial (91.13% of responses) (p.9) 
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In this paper proposal, we focus on one of the major student activities in the MICA 
courses, namely their designing, implementing (VB.net, Maple, C++), and using of 
interactive and dynamic computer-based environments, called Exploratory and 
Learning Objects (ELO). By Exploratory Object (EO) and Learning Object (LO), we 
mean the following. 

An Exploratory Object is an interactive and dynamic computer-based model 
or tool that capitalizes on visualization and is developed to explore a 
mathematical concept or conjecture, or a real-world situation 

and,  

A Learning Object is an interactive and dynamic computer-based 
environment that engages a learner through a game or activity and that 
guides him/her in a stepwise development towards an understanding of a 
mathematical concept. (Muller et al., forthcoming, p.5) 

To illustrate these objects, we provide without comment three examples of original 
student ELO projects that can be accessed at (MICA Student Projects website, n.d.): 
(1) Structure of the Hailstone Sequences EO by first-year student Colin Phipps for the 
investigation of a mathematical conjecture; (2) Running in the Rain EO by second-
year students Matthew Lillie and Kylie Maheu for the investigation of a real-world 
situation; and (3) Exploring the Pythagorean Theorem LO by first-year student 
Lindsay Claes for the learning of a school mathematical concept. 

In previous publications, we have elaborated how the MICA I course is designed to 
progressively bring the students to acquire the skills and understanding required for 
the development of ELOs (Muller & Buteau, forthcoming). In brief, as the course 
progresses, our students are guided through each step in the development process of 
ELOs that we describe in the next section of this paper. We have also explained that 
this requires a significant change in the teaching paradigm of faculty involved in 
these courses, and motivates a change in attitude in the students about learning and 
doing mathematics with technology at the university level (Muller et al., 
forthcoming). And also, we have argued that learning activities in the MICA program 
accelerates students' growth towards independence in doing mathematics (Buteau & 
Muller, 2006).  

In this paper we propose a first attempt at defining a structure for the student 
development process in their activity of designing, implementing, and using an ELO. 
These final MICA projects are completed individually or in pairs selecting a topic of 
their own choice. We also briefly discuss the role of interfaces in the student 
development of an ELO. As in the past, we, as mathematicians in a mathematics 
department, look forward to receiving constructive feedback from mathematics 
educators. We hope that the presentation of our innovative student learning activities, 
as part of the systemic integration of technology in our university mathematics 
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curriculum, will instigate educational research questions on learning mathematics 
with use of technology in tertiary education.  

STUDENT DEVELOPMENT PROCESS OF EXPLORATORY AND 

LEARNING OBJECTS 

In what follows, we suggest schematic representations of the development process for 
ELOs. Even though the schematic representations are worded generally, in their 
descriptions we focus on students in MICA courses. 

Development Process of an Exploratory Object to Investigate a Conjecture 

We propose the following diagram (Figure 1) to illustrate this development process. 

 

Figure 1. Development process of an Exploratory Object for the purpose of 

investigating a conjecture. 

Here is a description of each step in the diagram. 

1. Student states a conjecture, and may discuss it with the instructor; some of the 
more independent students wait until step 3 to discuss their project. 

2. Student researches the conjecture using library and Internet resources, and may 
refine his/her conjecture. In conjunction with step 3, student identifies the 
mathematics, such as variables, parameters, etc., and is involved in a Designing 
Cycle. 

3. With his/her understanding of the conjecture, student starts designing and 
implementing (i.e., coding) an interactive environment (i.e., program with interface) 
with a view to testing the conjecture. Student organizes the interface to make 
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parameters accessible and to display diverse representations of results. As the 
interface plays such an important role in EO, we discuss it further in the next section. 

4. Student selects, in a step-wise fashion, simple and more complex cases to test that 
the mathematics is correctly encoded and that the interface is fully functional. 
Together with step 3, the code testing and revising involve the student in a 
Programming Cycle. 

5. At this step, student now returns to focus on his/her conjecture and uses the Object 
to systematically investigate it. Following the results of the investigation, the student 
may decide to refine the Object, e.g., introducing new parameters, etc., and be 
involved in a Refining Cycle (with steps 2, 3, and 4). 

6. Student produces a report of his/her results and submits it with the Object. The 
report includes a statement of the conjecture, the mathematical background (from 
step 2), results of the exploration including an interpretation of the data and graphs 
(from step 5), a discussion, and a conclusion. This is somewhat similar to a science 
laboratory report. Building on this analogy, the Object is the laboratory itself. In other 
words, student submits his/her self-designed 'virtual laboratory' for the investigation 
of a self-stated conjecture together with his/her laboratory report. 

Development Process of an Exploratory Object to Investigate a Real-World 

Situation 

We propose the following diagram (Figure 2) to illustrate this development process. 

 

 

 

Figure 2: Development process of an Exploratory Object for the purpose of 

investigating a real-world situation. 
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Here is a description of each step in the diagram. 

1. Student selects a real-world situation of particular interest, and may discuss it with 
the instructor; some of the more independent students wait to discuss their project 
until step 3 or 4. 

2. Student researches the real-world situation using library and Internet resources, and 
may restrict or modify the scope of the real-world situation. In conjunction with steps 
3 and 4, student identifies the mathematics, such as variables, parameters, etc., and is 
involved in a Designing Cycle. 

3. Student develops a mathematical model of the real-world situation using the 
variables and parameters selected in step 2 and in the majority of cases, consults the 
instructor. 

4. With his/her understanding of the model, student starts designing and 
implementing (i.e., coding) an interactive environment (i.e., program with interface) 
with a view to investigating the real-world situation. Student organizes the interface 
to make the model parameters accessible and to display diverse representations of 
solutions. As the interface plays such an important role in EO, we discuss it further in 
the next section. 

5. Student selects, in a step-wise fashion, simple and more complex cases to test that 
the mathematical model is correctly encoded and that the interface is fully functional. 
Together with step 4, the code testing and revising involve the student in a 
Programming Cycle. 

6. At this step, student now returns to focus on his/her real-world situation and uses 
the Object to systematically investigate it. Following the results of the investigation, 
the student may decide to refine the model and the Object, e.g., introducing or 
deleting, new parameters and variables, new conditions, etc., and may be involved in 
a Refining Cycle (with steps 2, 3, 4 and 5). 

7. Student produces a report of his/her results and submits it with the Object. The 
report includes a description of the real-world situation, a development of the 
mathematical model (from step 3), results of the exploration (from step 6) including 
an interpretation of the data and graphs, a discussion, and a conclusion. This is 
somewhat similar to a science laboratory report. Building on this analogy, the Object 
is the laboratory itself. In other words, student submits his/her self-designed 'virtual 
laboratory' for the investigation of a self-selected real-world situation together with 
his/her laboratory report. 

Development Process of a Learning Object of a Mathematical Concept 

We propose the following diagram (Figure 3) to illustrate this development process. 
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Figure 3: Development process of a Learning Object of a mathematical concept. 

Here is a description of each step in the diagram. 

1. Student selects a school concept.  

2. Using library and Internet, student looks at resources about the concept and its 
teaching. In particular, student identifies when in the school curriculum the concept is 
taught, reviewed and expanded, what previous mathematical understanding, general 
knowledge and reading capabilities can be assumed, etc. In conjunction with steps 3 
and 4, student identifies and develops the mathematics didactical features that could 
be used for his/her Object, and is involved in a Designing Cycle. 

3. Based on the information gathered in step 2, student selects a didactical strategy 
for a fictive school pupil learning of the concept that may include developing a game 
or activity to engage the learner, breaking down the concept, setting up a testing 
procedure, etc. Student may discuss the strategy with the instructor or wait until the 
next step.  

4. Student starts designing and implementing (i.e., coding) an interactive environment 
(i.e., program with interface) with a view to implement the didactical strategy. 
Student structures a self-contained interface realizing that the fictive school pupil will 
be using the LO independently. As the interface plays such an important role in LO, 
we discuss it further in the next section. 

5. Student tests that the interface (communication, navigation, etc.) is fully functional 
and tests with simple and more complex cases that the mathematics is correctly 
encoded. Together with step 4, the code testing and revising involve the student in a 
Programming Cycle. 

6. At this step, student now returns to focus on his/her didactical strategy and works 
through the Object with a school pupil in mind. Following the results of this 
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investigation, the student may decide to refine the Object, e.g., changing the sequence 
of activities, improving the clarity of communication, etc., and may be involved in a 
Refining Cycle (with steps 3, 4, and 5). 

7. Student tests his/her Object by observing a school pupil, at appropriate grade level, 
working with the Object. In some cases, student returns to the refining cycle and 
revises the Object. 

8. Student produces a report of his/her results and submits it with the Object. The 
report includes the didactical purpose, the target audience, the mathematical 
background of the target audience, a brief account of the school pupil experience 
(step 7), and a discussion. This report is somewhat similar to a lesson plan, including 
a post-lesson reflection, though without a description of the lesson. Building on this 
analogy, the Object is the lesson itself. Thus, student submits his/her lesson plan of a 
self-selected mathematical concept in which the written description of the lesson is 
replaced by an 'interactive self-directed lesson (with a virtual learner)', i.e., by the 
Object. 

ROLE OF THE INTERFACE IN THE DEVELOPMENT PROCESS OF 

EXPLORATORY AND LEARNING OBJECTS  

The interface provides interactivity and (dynamic) visualization. In the Development 
Process of ELOs (Figures 1, 2, and 3), the student creates an interface in the 
Designing Cycle with the aim of using it for his/her mathematical or didactical 
investigation (step 5 in Figure 1 and step 6 in Figures 2 and 3). 

During the Designing Cycle of an Exploratory Object, the potentiality of interactivity 
encourages the student to make explicit the parameters that could play a role in the 
investigation of his/her conjecture or real-world situation in such a way that they are 
accessible from the interface. The potentiality of visualization urges the student to 
decide on the representations to be displayed in his/her interface so as to best support 
his/her investigation.  

At the step in the Development Process when the student uses the Object for his/her 
investigation (step 5 in Figure 1 and step 6 in Figure 2), both interactivity and 
visualization aspects of the interface play a role in the student's systematic 
investigation. The latter can be seen as a dialogue between the student and the 
computer, though the discussion is fully controlled by the student. During the 
systematic investigation, the student sets a question by fixing values to parameters 
(interactivity), the computer answers the question (visualization), and the dialogue 
continues in that way unless the student concludes that the answers are not 
satisfactory to meet his/her goal and decides to refine the Object (Refining Cycle). In 
other words, the student is in an intelligent partnership (Jones, 1996) with 
technology.  

The interface plays a central role in Learning Objects but which is different than in 
the Exploratory Objects. A Learning Object is designed for other users to use by 
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themselves, i.e., without the Object designer who is the student in our case. Thus the 
navigation in the interface should be very clear and easy. The interface should also 
provide, at any time, motivation for the intended users to go to a next step in the 
Object. As such, the visual presentation and the wording should be adapted to the 
intended users: 

For Learning Objects students [are] reminded constantly that they are 
designing interfaces for people who are not experts and that they need to take 
into account such issues as the user’s age, educational level, gender, cultural 
background, experience with computers, motivation, disabilities, etc. (Muller 
et al., forthcoming, p.12) 

Also, students should 

... break away from the linearity of the written tradition in order to take full 
advantage of the technological paradigm. (Muller et al., forthcoming, p.12) 

In step 8 of the Development Process of the LO (Figure 3), we introduced an analogy 
where the Object is a 'lesson with a virtual learner'. Using this analogy, the interface's 
potentiality of interactivity encourages the student during the Designing Cycle to 
develop an active 'lesson', i.e., a lesson that is interactive, with the intended fictive 
pupil. The interface's potentiality of visualization facilitates the development of 
transparent communication of the 'lesson' flow and makes it possible for the student 
to test his/her 'lesson' (steps 6 and 7 in Figure 3). In other words, we suggest that 
these two potentialities allow the student to develop a 'guided intelligent partnership' 
between a fictive pupil and technology. 

REFLECTIONS 

Diagrams shown in Figures 1, 2, and 3 clearly indicate our view that the student 
mathematics learning experience through the designing and implementing of an ELO 
is richer than what is experienced through activities of only programming 
mathematics. The interface plays a major role through its interactivity and 
visualization potentialities as it provides students with an opportunity to be involved 
in an 'intelligent or guided intelligent partnership' with the technology.  

In a recent collaborative project between a local elementary school, École Nouvel 
Horizon, and our Department of Mathematics, MICA student Sarah Camilleri was 
involved as part of her Honour's project in the development of Fractions 
Fantastiques/Fantasy Fractions Learning Objects (Camilleri, 2007; Buteau et al., 
2008a and b; MICA Student Project website, n.d.). In this development, she worked 
with a Grade 5 class, the teacher, and the school principal. It is worthwhile to explore 
the ways in which individuals took different roles and responsibilities in the 
Development Process (Figure 3). 

Sarah and the teacher selected the fraction concept (step 1), and Sarah researched it 
(step 2). The teacher taught fractions to the class and presented the collaborative 
project. In the Designing Cycle, guided by the teacher and the principal, the Grade 5 
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pupils developed the dynamic mathematics lessons, interactive mathematics games, 
story line of the Object, its characters, etc., and provided drawings and written 
materials to communicate their ideas to Sarah who had to select and adapt some of 
them for programming purposes. The pupil design work was achieved in class 
discussions and in smaller groups of two or three. Within the Programming Cycle 
Sarah took the responsibility of faithfully implementing the pupils' design which also 
involved the digitizing of the pupils' drawings. The Refining Cycle involved Sarah 
and the teacher for testing the functionality of the Learning Object and checking the 
faithful integration of the pupils' ideas. Fractions Fantastiques Learning Object was 
presented by Sarah to the Grade 5 class and each pupil received a CD-ROM copy of 
their Learning Object (step 8). 
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We propose a discussion on preliminary results of a literature review pilot study 
regarding the use of CAS in post-secondary education. Several issues surrounding 
technology integration emerged from our review, and these are described in detail 
within the paper. The brief report on the type of analysis and the integration scope in 
curriculum suggest that the multi-dimensional theoretical framework proposed by 
Lagrange et al. (2003) needs to be adapted for our focus on systemic technology 
integration in post-secondary education. 
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Introduction 

A growing number of international studies have shown that Computer Algebra 
System (CAS-based) instruction has the potential to positively affect the teaching and 
learning of mathematics at various levels of the education system, even though this 
has not been widely realized in schools and institutions (Artigue, 2002; Lavicza,  
2006; Pierce & Stacey, 2004). In contrast to the large body of research focusing on 
technology usage that exists at the secondary school level, there is a definite lack of 
parallel research at the tertiary level. However, Lavicza (2008) highlights that 
university mathematicians use technology at least as much as school teachers, and 
that the innovative teaching practices involving technology that are already being 
implemented by mathematicians in their courses should be researched and 
documented. Further, Lavicza (2008) found that within the research literature there 
existed only a small number of papers dealing with mathematicians and university-
level, technology-assisted teaching. In addition, most of these papers are concerned 
with innovative teaching practices, whereas few deal with educational research on 
teaching with technology. These findings coincide with school-focused technology 
studies conducted by Lagrange et al. (2003) and Laborde  (2008). 

We aim to point out that it is particularly important to pay more attention to 
university-level teaching, because universities face new challenges such as increased 
student enrollment in higher education, decline in students’ mathematical 
preparedness, decreased interest toward STEM subjects, and the emergence of new 
technologies (Lavicza, 2008). Mathematicians must cope with these challenges on a 
daily basis and only a few studies have offered systematic review and developed 
recommendations in this area. Our project aims at both documenting university 
teaching practices involving technology, and formulating recommendations for 
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individual and departmental change. Our research program also aims at raising the 
amount of attention paid to tertiary mathematics teaching from a research point of 
view and, from a more practical side, elaborating on specific issues and strategies for 
the systemic integration of technology in university mathematics courses. 

Method Design and Implementation 

Based on the above-mentioned Lavicza (2008) findings and recommendations, we 
designed a mixed methods research study which involves a systematic review of 
existing literature regarding CAS use at the tertiary level. The theoretical framework 
developed by Lagrange et al. (2003) involved several stages. They first reviewed a 
large number of papers in relevant journals and then categorized these papers into 
five “types.” Based on these types, they then selected a sub-corpus of papers dealing 
specifically with educational research papers focusing on technology use mainly in 
the secondary school. Through the careful analysis of this sub-corpus of papers, they 
further developed seven dimensions, each with key indicators, and then proceeded to 
identify and further analyze papers that best described each of these dimensions.  

The theoretical framework of Lagrange et al. (2003) provided our research team with 
a helpful foundation from which to prepare for our own literature review which will 
involve approximately 1500 papers/theses. It was decided to implement a pilot study 
for this large literature review in order to begin to work with the Lagrange et al. 
framework and to determine if it would be sufficient for our purposes, or may be in 
need of certain modifications.  In the summer of 2008, we therefore began our pilot 
study focusing on 326 contributions dealing with CAS use in secondary/tertiary 
education. These papers were drawn from two well-regarded journals, namely the 
International Journal for Computers in Mathematical Learning (issues since its 
beginning in 1996) and the Educational Studies in Mathematics (since 1990). We 
also selected proceedings from two technology-focused conferences, namely the 
Computer Algebra in Mathematics Education (since its first meeting in 1999) and the 
International Conference on Technology in Collegiate Mathematics (since 1994 with 
first electronic proceedings). A sub-corpus of 204 papers dealing specifically with 
CAS use at the post-secondary level was also identified to further focus the analysis.  

While the descriptive categories found within the Lagrange et al. template were 
helpful, we began to notice that several other category/theme columns would be 
helpful at this stage of the instrument/template development (e.g., we added fields 
such as “computer/calculator,” “implementation scope,” and “implementation 
issues”). An important point to note here is that in contrast to the Lagrange study 
where the majority of papers were those describing educational research results, our 
selection of papers revealed a majority that focused on practitioner innovations with 
very few involving educational research. Thus, we realized that in order to develop 
our template for reviewing the large number (1500) of papers in the research study 
proper, we would have to separate the practitioner report type papers from the 
educational research papers, and further modify the template in both of these areas. In 
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Figure 1: Issues in integrating CAS in 

university education 

this paper we outline preliminary results of our ongoing pilot study, with a specific 
focus on a series of “issues of implementation” at the tertiary level of education. 

Results 

The majority of the papers in the corpus are 
practice reports by practitioners (88%), 
whereas the remaining contributions are 
education research papers (10%) or letters to 
journal editors (1%) (see Table 1). Among the 
practice reports, different types of 
contributions become apparent. Some (94) are 
merely examples of CAS usage. Other papers 
(41) are mostly examples of CAS but feature 
reflections by the practitioner. A few (13) have 
the practitioners go further and include 
classroom data and perform some basic 
analysis. There are also papers (5) that focus 
on classroom surveys and a small set (7) that 
examines a specific issue in detail. The 
remaining contributions (23) are conference abstracts only. The analysis of the 
education research papers according to Lagrange et al.'s multi-dimensional 
framework (2003) is still in progress. In this paper, we focus our analysis mainly on 
practitioner reports. 

In addition, nearly all papers are American (87%). The computer use is more evident 
(59%) than the use of graphical calculators (29%) or than the combined use of both 
computer and graphing calculators (10%). Furthermore, the most widely used CAS in 
the corpus is the graphing calculator (83 papers), followed by Maple (53) and 
Mathematica (43). Derive (21) and Matlab (11) are also common, as well as 27 
papers dealing with other CAS. In what follows, we elaborate on one particular 
significant aspect of the study, namely “integration issues” that emerged from our 
review, and also briefly report on “integration scope.” 

Issues of CAS Integration  

Education researchers and practitioners widely wrote about issues surrounding the 
use and implementation of CAS at post-secondary education (72 papers). With regard 
to practitioner reports, 56 papers identify some issues; of these there are 20 that go 
into considerable detail. These papers could be further divided into two categories: 
Seven of them deal with a specific problem relating to CAS (e.g., rounding error) and 
thirteen discuss various 
implementations of CAS while 
underlining the hurdles the authors 
encountered. Of the sixteen issues 
identified in the corpus and 

Table 1: Type of Contribution 

Presentation of Examples  

Examples with practitioner reflections  

Classroom Study  

Classroom Survey   

Examinations of a specific issue  

Abstract only 

------------------------------------------------------- 

Education research papers 

Letters 

46% 

20% 

6% 

3% 

3% 

11% 

------- 

10% 

1% 
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summarized in Figure 1, we divide them into three categories: Technical (first four 
columns), cost-related (fifth column), and pedagogical (last 11).  

There are four issues discussed in the literature dealing specifically with 
technological aspects: Lab availability (Lab), reliability of technical support (Tec), 
system requirements (Sys) and troubleshooting (TrS). These issues may not be 
independent from each other. For example, May (1999, p. 4) urges instructors to test 
out their Maple worksheets on the lab computers rather than their own workstations 
due to such machines having less memory installed in them. Weida (1996, p. 3) notes 
that in troubleshooting, various hardware problems arise and his “experience and lots 
of calls to the Computer center” helps. An unexpected issue for him was the class 
interruption of students not enrolled in his class. While they would never think to 
disrupt a lecture, they would see nothing wrong with walking into his lab session to 
complete homework for other courses. 

Many reports mention the issue of costs (Cost) incurred by integrating CAS into 
instructors’ courses, providing few further details beyond the existence of the 
financial obstacle. An exception occurs in one paper where the authors argue for a 
particular choice of open-source (free) technology, namely GeoGebra (Hohenwarter 
et. al, 2007, p. 5). 

Wu (1995) notes that besides the cost aspect, enacting calculus reform “requires more 
talent and training” (p. 1). This need for trained staff (staf) is mentioned in seven 
papers, often in conjunction with other issues. For example, to deal with technical 
difficulties during labs, Weida relies on his own experience to assist in 
troubleshooting (1996, p. 3). At the beginning of an attempt at CAS integration, 
Schurrer and Mitchell (1994, p. 1) wondered, “how they could go about motivating 
[sceptical mature faculty] to consider introducing the available technology and 
making the curricular changes this would require?” 

Schurrer and Mitchel (pp. 1-2) further discuss the need for time for the faculty 
(TimF) to design courses and meaningful activities with technology. Their 
department required decisions on types of technology used and on what technology 
curriculum package had a “right mix.” They note that program-wide integration takes 
time. In their case at University of Iowa, it took seven years to implement (p. 3). 
Even after a curriculum change, additional time demands on faculty are reported by 
practitioners. Wrangler (1995, p. 8) notes that near constant improvement is needed 
in lab experiments and stresses that for faculty there is “no resting on laurels.” A 
closely related issue is the problem of time management in courses (TimC). Wrangler 
(p. 8) remarks that besides the time he spent outside of class, he had to take his 
students into the lab and walk them through basic commands. Many other 
practitioners, such as May (1999, p. 4), expresses similar sentiments. While this issue 
is discussed less frequently than time spent outside the classroom, practitioners report 
about both issues in conjunction (e.g., Wrangler p. 8).  



 

CERME 6 85 WG7 

 

CAS integration also affects classroom time management with respect to course 
content. Dogan-Dunlop (2003, p. 4) remarks that, “since class time was allocated for 
in-class demonstrations and discussions, detailed coverage of all the topics that were 
included in the syllabus was not possible.”  

Another source of pressure on time management is the failure of students to achieve 
learning objectives (Obj). Krishanamani and Kimmons (1994, p. 4) note that students 
failed to learn material assigned in labs and they had to include it in later lectures.  

One particular type of student error that clashes with learning objectives is the 
assumption on the part of students that their methodology is correct if their paper-
and-pencil calculations match up with results obtained from the computer. As Cazes 
et. al. (2006 p. 342) write, “a correct answer does not mean the method is correct or is 
the best one. Teachers and students must be aware of such… pitfalls.” Often students 
engaged in trial and error strategies, with students guessing the answer from feedback 
without making a proper mathematical argument (p. 347). Instructors sometimes 
failed to ensure that students found an “optimal” solution to a particular problem 
rather than just having a “correct” answer (pp. 342-343).  

Pedagogical difficulties with learning objectives can place demands on faculty time 
not only inside but also outside of the lecture hall. Dogan-Dunlap (2003 p. 4) had to 
redesign his course and the use of CAS within it three different times because of such 
concerns. As previously discussed, there is an ongoing time commitment by faculty 
to improve their lecture and laboratory instruction and Dogan-Dunlap’s experiences 
show that student difficulties may greatly influence the nature of those changes. 

Related to the learning objectives issue, that of guidance (Gui) also emerges from the 
review. Often practitioners show concerns as to how much help they should give their 
students without compromising learning objectives. Westhoff (1997) designed a 
student project for Multivariate Calculus on the lighting and shading of a 3-
dimensional surface. He found that the difficulty in the project, due to its complexity, 
lays in determining how much he could tell his students (p. 6). Another area in which 
guidance becomes an issue is mentioned by Weida (1996). Noting that there is a “fine 
line between helping students… and ‘giving away’ the answers,” he remarks that 
such a problem is “particularly exacerbated at the end of a lab when the slower 
workers are running out of time” (pp. 3-4). Weida further presents the idea that 
careful scheduling could help alleviate this by ensuring that there isn’t a need to leave 
immediately after the lab. 

Student frustration (Frus) is another issue related to learning objectives. Cazes et. al. 
(2006, p. 344) note that students would often seek help either online or via the 
instructor “after having encountered the first difficulty” rather than attempting to 
solve the problem on their own. Krishahamani and Kimmons (1994) took steps to 
reduce anxiety both in course design and in providing additional help for students. 
Several measures, including reduced expectations, more time for tests, increased 
extra credit problems and a homework hotline were implemented (p. 2). Clark and 
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Hammer (2003, p. 3) had a project for first year calculus modeling a rollercoaster. 
They found that “students who were not as “good” at Maple struggled, found the 
project (and Maple syntax) frustrating and were just happy to produce one 
mathematical model.” This suggests possible relationship between student frustration 
and failure regarding activity learning objectives, and the CAS syntax issue.  

Syntax (Synt) is the second most frequent concern for both practitioners and students. 
Cherkas (2003) found this to be a source of student dissatisfaction. He quotes a 
student complaining, “Mathematica would cause a lot of problems. If I make a 
mistake in the syntax, I couldn’t do my work” (p. 31).  

Tiffany and Farley (2004) exclusively focus on common mistakes in Maple, 
emphasizing the hurdle for practitioners caused by syntax. Practitioners employ 
various schemes attempting to minimize this difficulty. Some such as May (1999) 
design interactive workbooks that eliminate the need for teaching syntax entirely. 
Others like Herwaarden and Gielen (2001, p. 2) provide Maple handouts with 
expected output to their students. Some emphasize a pallet-based CAS such as Derive 
(Weida, 1996, p. 1) because it is easier to learn and has, according to them, a more 
straightforward notation.  

Another source of student frustration is the unexpected behaviour of CAS (UnExp) 
even when their reasoning is syntactically and mathematically correct. Sometimes 
this is merely the case of paper-and-pencil calculations not easily matching up with 
CAS output. CAS may employ an algorithm efficient for computation and not 
necessarily one that matches a hand technique. For example, Holm (2003, p. 2) found 
that an online integral calculator would (rather than using the substitution method for             

                ) simply expand the product and use the power rule. He notes that such 
cases provide an opportunity for learning, and that, referring to another classroom 
assignment, the more “savvy student would… expand                 .” Unexpected 
behaviour of CAS also takes the form of errors by the computers themselves. Due to 
the nature of floating point arithmetic and in spite of correct input by the user, 
roundoff error can cause the output to be wrong (Leclerc, 1994, p. 1). To encourage 
her students to adapt, Wu (1995, p. 2) purposely designed a lab with roundoff error. 
LeClerc urges students to be instructed in the nature of floating point arithmetic so 
that they “will be able to detect when roundoff has corrupted a result and hopefully 
find better ways to formulate or evaluate the computation” (1994, p. 4). 

The concept of the “black box” (bbox) is examined in seven papers. Though this 
issue tends to be explored in more detail in education research papers, practitioners 
comment on it as well. O’ Callaghan (1997, p. 3) writes that faculty at Southeastern 
Louisiana University expressed concern that “students would become button pushers 
rather than problem solvers.” The managed used of the black box as an opportunity 
for students to explore complex mathematics beyond their level is discussed in great 
detail in education research papers (e.g., Winsløw, 2003, p. 283). Practitioners do not 
emphasize this potential as much. However, Cherkas (2003, p. 234) notes that CAS 
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allows practitioners “to teach at a higher level of mathematical sophistication than is 
possible without such technology.” 

Closely related to the “black box” issue, is the fear that students become too reliant 
on the technology (rely). This, along with student frustration, is the least mentioned 
pedagogical issue. Cherkas reports on a student complaint that s/he could not do 
questions on tests because “Mathematica usually did them for me” (pp. 231-232). An 
over-reliance on technology may interfere with learning objectives. Considering this, 
Shelton (1995, p. 1) emphasizes her “top-down” approach and writes that “students 
can avoid the technology crutch and approach the goal of developing determination 
and mathematical maturity to perform mathematics without the technology.” 

The last and most commonly examined issue encountered in the literature is that of 
assessment (Ass). Practitioners encounter problems in evaluation. Schlatter (1999) 
allowed for CAS use during his exam for his multivariate calculus course. 
Unfortunately, in a question designed to test student understanding of the divergence 
theorem, several students simply used the CAS capabilities to solve the integral in a 
“brute force” approach (pp. 8-9). A poorly designed assessment thus leads to a failure 
in learning objectives. Schlatter further writes that he expected “to spend more time 
during this semester… more carefully designing exam questions” (p. 8), pointing 
again to the issue of faculty time.  

Interpreting CAS output is discussed frequently. Quesada and Maxwell (1994, p. 
207) never accept a decimal answer (even if correct) if there is a proper algebraic 
expression. Many papers that discuss mathematical projects stress the use of written 
reports (e.g. Westhoff, 1997, p. 1). Lehmann (2006, p. 3) writes in his assignment 
“the important part of this assignment is the thought you put into it, the analysis you 
do and the presentation of your solution, not the answers themselves.” Xu (1995, p. 
1) found that students were finding derivatives of easy functions by hand on 
assignments, but using graphing calculators to solve the more difficult questions. To 
show students “that the calculator could not do everything for them” he found 
functions in the textbook that “were easy to handle by hand but could not be done 
easily on the calculator.” 

CAS Integration Scope 

Policy making regarding the curriculum in tertiary education is rather different than 
in school education. Hodgson and Muller (1992) mention that school mathematics 
curricula are in general developed by Ministries or Boards and implemented in the 
classroom by teachers, whereas tertiary mathematics curricula are developed and 
implemented by the same actors, i.e., faculty in departments of mathematics. 
However, change involving technology in tertiary curriculum, like in its secondary 
school counterpart, seems to remain very slow (Ruthven & Hennesssy, 2002). 
Lavicza (2006) argues that due to academic freedom, "Mathematicians have better 
opportunities than school teachers to experiment with technology integration in their 
teaching". This ad hoc basis is strongly reflected in our literature review. A large 
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majority (67%) of the corpus restricted to practice reports discusses CAS usage with 
regards to one course, or in other words, CAS integration by one practitioner. While 
16% has a scope that reaches across a series of courses (e.g. calculus courses), 11% 
discusses a CAS implementation with a grouping of courses (e.g. all first year 
courses). Only 6% discusses a program-wide implementation within a department.  

 

Conclusions 

There is a need to develop a framework for the review of literature on the use of CAS 
at tertiary education that will integrate specificities of university-level education and 
technology integration. A significantly stronger majority of papers in our study 
stemmed from practitioner use (88%) than in Lagrange et al.’s (2003) study (60%) 
which stated, ”Most of the [practitioner] papers lack sufficient data and analysis and 
we could not integrate them into the [detailed (statistical) analysis]” (p.242). Our 
selection of journals and conferences for our pilot study may have influenced the 
above percentage. Nevertheless, this reality will clearly influence the development of 
our analytical framework henceforth. Lagrange et al. (2003) further state, 

[Practitioner] papers offer a wealth of ideas and propositions that are stimulating, 
but diffusion is problematic because they give little consideration to possible 
difficulties. Didactical research has to deal with more established uses of 
technology in order to gain insights that are better supported by experimentation 
and reflection. We have then to think of these two trends as complementary rather 
than in opposition. (p.256)  

We aim at elaborating upon these complementary trends at the post-secondary level 
by both analyzing existing instructional practices and scrutinizing problematic issues 
within implementation. Lagrange et al. (2003) further state that the “integration into 
school institutions progresses very slowly compared with what could be expected 
from the literature” (pp. 237-8). This might be the case for school education, but 
apparently less so for tertiary education (Lavicza, 2008). The research literature about 
school mathematics and technology seems to pay less than adequate attention to the 
actual classroom implementation piece. The literature about tertiary mathematics and 
technology tends to inform us more about (individual) implementation than its 
didactical issues and benefits. This suggests that there may be a need for more 
education research focusing on the integration of technology in tertiary education. It 
also points, as suggested by Table 2, to the need of resources for departments of 
mathematics for systemic integration of technology in curriculum. At the recent 
ICME 11 conference, the results of a special survey highlighted concerns about the 
international trend of disinterest in university mathematics (ICME 11, n.d.). 
Departments of mathematics have a responsibility to question the current curriculum. 
We contend that part of this responsibility includes the careful consideration of the 
role and relevance of technology within that 21st-century curriculum and classroom. 
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GEOMETERS’ SKETCHPAD SOFTWARE FOR NON-THESIS 

GRADUATE STUDENTS: A CASE STUDY IN TURKEY 

Berna CANTÜRK-GÜNHAN , Deniz ÖZEN 

Dokuz Eylul University, Izmir, Turkey. 

The purpose of this paper is to determine mathematics teachers’ views about 

Geometers’ Sketchpads Software (GSP) and to analyze the effects of training sessions 

on prospective teachers’ ability to integrate instructional technology into geometry 

concepts. For that purpose, we selected two graduate pre-service teachers and 

investigated GSP activities. Training sessions about using GSP were proposed to 

them. The data come from interviews with them and GSP activities improved by them. 

The results of this study indicate their awareness level was increased about GSP.  

Keywords: Teacher Education, Secondary Mathematics Education, Non-thesis 

Graduate Program, Integrating Technology, Geometers’ Sketchpad Software. 

INTRODUCTION  

Today’s use of technology as a learning tool supplies the students with gaining the 
mathematics skills in their lessons. According to Newman (2000), the use of 
technology in learning arouses curiosity and thinking, and challenges students’ 
intellectual abilities. Kerrigan (2002) state that using mathematics software promote 
students’ higher order thinking skills, develop and maintain their computational skills. 
For this reason, teacher training is crucial in order to use technology in mathematics 
education.    

Computers could be used in school for teaching geometry, and since then a lot of 
work has been done that discusses many aspects of using Dynamic Geometry 
Software (DGS) in education (Kortenkamp, 1999). In this study, it was concerned 
with DGS activities developed by non-thesis graduate student teachers. Non thesis 
graduate program is in Turkey was opened for the purpose of educating future 
teachers. The secondary school (grade 9-11) mathematics teacher training program 
made up of two different programs. The Five-Year Integrated Programs (3.5+1.5) in 
Faculty of Education and Non Thesis Graduate Program (4+1.5) in Faculty of 
Science. Last 1.5 year part is the same for both 3.5+1.5 and 4+1.5 programs. Of 
these programs 3.5 and 4 year are spent on taking the mathematics courses and 
remainder years on pedagogical courses. After graduation, they can be secondary 
school mathematics teacher. This program is described in more detail in YOK 
(1998). The aim of this study was to investigate whether their views changed after 
the education process and to determine the outcomes about student teachers’ 
proficiency.   
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THEORETICAL FRAMEWORK 

In geometry, teachers are expected to provide “well-designed activities, appropriate 
tools, and teachers’ support, students can make and explore conjectures about 
geometry and can learn to reason carefully about geometric ideas from the earliest 
years of schooling” (NCTM, 2000). Mathematics teachers can help students 
compose their learning by using geometry sketching software. Geometer’s 
Sketchpad allows younger students to develop the concrete foundation to progress 
into more advanced levels of study (Key Curriculum Press, 2001). 

Reys et al. (2006) point out young learners of mathematics need to  

• experience hands-on (concrete) use of manipulative for geometry such 
as geoboards, pattern blocks and tangrams,  

• connect the hands-on to visuals or semi concrete models such as 
drawings or use the sketching software on a computer,  

• comprehend the abstract understanding of the concepts by seeing and 
operating with the picture or symbol of the mathematical concept (cited 
in Furner and Marinas, 2007).  

GSP is an excellent tool for students to understand the properties of geometric 
shapes and to model for them mentally manipulating objects. GSP can also provide 
students to visualize the solid in their mind.  In literature, McClintock, Jiang and July 
(2002) found GSP provides opportunities to have a distinct positive effect on 
students' learning of three dimensional geometry. In another study, Yu (2004) stated 
that the students’ concurrent construction of figurative, operative and relational 
prototypes was facilitated by dynamic geometric environment. That’s why, the 
knowledge about which DGS and DGS activities how prepared should be given the 
student teachers. 

METHOD 

Participants 

Case study was used in this paper. This research was conducted during the spring 
term of 2007–2008 academic years in spring term. The study was conducted with 
two secondary school preservice teachers attending the 4+1.5 Integrated Secondary 
Mathematics Teacher Education Program at Dokuz Eylul University in Turkey. Of 
the ten students in this program there were two volunteers. In this process, they 
took the courses about mathematics content knowledge, pedagogical content 
knowledge and general pedagogical knowledge. All participants had basic 
computational skills but none of them knew how to use DGS.    

Data Collection 

The data were collected from interviews and the activities which are prepared by the 
student teachers. The interviews were semi-structured in nature. In the beginning of 
the research, the opinions of the participants towards GSP software are taken with 
semi-constructed interview form. Each interview took approximately 15-20 minutes 
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and recorded with a tape. Then the participants attended a six-hour GSP training 
sessions which is given by the researchers. After the program, it was demanded that 
the participants developed the GSP activities. Finally, the participants` opinions 
towards GSP software are taken again.  

The Geometer’s Sketchpad Training Sessions  

The training sessions allowed the instructor to prepare the non-thesis graduate 
student teachers to enter their future mathematics classrooms not only 
knowledgeable about the capabilities of instructional technology, but also 
experienced enough to appropriately integrate their selected software. The GSP 
training sessions’ content is given Table 1. 

 Training Sessions Topics Duration 

 
Introductory 
(Guided & 

Discussed) 

• major concepts of mathematics 
education  

• the aim of the involved Software 
• introduction to dynamic geometry 

environment with GSP 
• introduction to tools and menus of the 

Software  

1 hour 

  
  
  
  
  
  
  
  
  
 D

A
Y

 1
 

 
Constructing 

Geometrical Concepts 
(Guided & 

Discussed) 

• to construct basic concepts of 
geometry  

• to transform the rotation, reflection, and 
dilation of the figures 

• to construct regular and non-regular 
polygons, and its interiors 

• to measure in geometry (length, 
distance, perimeter, area, circumference, 
arc angle, arc length, radius, etc.) 

• to graph various functions and its 
derivative 

1 hour 

Animation and 
Presentation 
(Guided & 

Discussed) 

• to use action and hide/show buttons 
• to tabulate the data 
• to prepare presentations 

2 hours 

D
A

Y
 2

 

Activity Planning 
(Guided & 

Individual) 

• to plan activities and practice it 2 hours 

Table 1: Training Sessions 

DAY 1 included two sessions. Each session is formed of an hour.  

Introductory Session: The introductory session contained the major concepts of 
mathematics education, introduction to dynamic geometry environment with GSP 
and the aim of the involved Software. 
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In the beginning of the session, the participants discussed the major concepts -
conceptual development, problem solving, modelling verbal problems, creative 
thinking, analytical thinking etc.- in order to determine their readiness with 
researcher. Then, they argued the aim of the involved Software. Afterwards, the 
participants introduced Dynamic Geometry Environment, the menus, sub-menus and 
tools of the GSP Software. When the participants get information about tool box, 
text palette, file menu, edit menu, display menu, construct menu etc., the researcher 
advanced next session. 

Constructing Geometrical Concepts: In this session, the participants find out how to 
construct the basic concepts of geometry; such as ray, line, segment, paralel line, 
perpendicular line, angle bisector, median of triangle, altitude of triangle, arc etc.  

When the participants learned how to use the menus, sub-menus and tools, the 
researcher showed them some operations. The participants learned about 
constructing regular and non-regular polygons, and its interiors. After that, they 
learned to change the color and width of the lines and figures.  

Then, they transformed the rotation, reflection, and dilation of the figures. 
Subsequently, they measured length, distance, perimeter, area, circumference, arc 
angle, arc length, radius, etc. with using GSP.  

When they reached the graph menu, they defined coordinate system, chose grid 
form and they draw some graphs with GSP, such as sinus, cosinus, tangent, etc. 
Afterwards, they graphed various functions and its derivatives. During this session, 
the participants discussed the functions of GSP each other if it was necessary or it 
was forgotten.  

DAY 2 comprised two sessions. Each session are made up of two hours. 

Animation and Presentation: In this session, the participants found out text palette 
on advanced level.  Next they learned motion controller, how to paste picture and 
then passed animation and hide/show buttons. They learned how to utilize animations 
and change it’s’ speed. Then they learned to trace points, segments, rays and lines. 
Afterwards they focused on tabulate the data on tables in order to show them 
regularly. 

After they learned animation and presentation clues, they started to organize page 
setup and document options in order to prepare excellent presentations. 

Activity Planning: This session includes all of the applications learned. The 
researchers wanted the participants to prepare activities. And they also wanted to 
apply all the operations learned in their activity. In the preparation period, if the 
participants needed to be supported, the researchers could be guiding them. 

Data Analyses 

In the interview, four open-ended questions were asked to the participants and the 
interview guide was used in this stage. During the interview, the questions like 
“What are the GSP aims in mathematics learning environment?” “Which students’ 
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skills are able to improve by GSP activities?”, “What do you take into account while 
the GSP activities are composed?” and “How can you assess the students with the 
GSP activities?” were answered by the students. 

The evaluating criteria were determined in order to assess the activities improved by 
the student teachers. These criteria were adapted from Roblyer (2003). 

1.  Connection to mathematics standards. 

2.  Appropriate approach to mathematics topics with respect to grade, ability.  

3.  Presence of conceptual development, problem solving/higher order 
thinking skills.  

4.  Use of practical applications and interdisciplinary connections.  

5.  Suitability of activities (interesting, motivating, clear, etc.) 

Table 2: Evaluation Criteria adapted from Roblyer (2003)  

RESULT 

In this section, the analysis of data obtained from two preservice teachers’ view 
transcripts and activities which they prepared are presented. 

Handan’s Case  

Handan is working as an assistant teacher in private teaching institution for a year. 
During the pre-interview, four questions were asked her. She made explanations as 
follows:  

Researcher : What are the GSP aims in mathematics learning environment? 
Handan : It supplies the students with learning and visualizing in math 

lessons and preparing animations. 
Researcher : Which students’ skills are able to improve by GSP activities? 
Handan : The students’ spatial thinking skills are improved.  
Researcher : What do you take into account while the GSP activities are 

composed? 
Handan :  It should be appropriate the students’ cognitive level. 
Researcher : How can you assess the students with the GSP activities? 
Handan : I don’t know because of lacking knowledge about GSP.  

As can be seen in her statements, although she mentioned that she did not know 
GSP, she could be able to estimate its aims, skills to be improved and rules taken 
into account when the activities had done.   

After training sessions, the researcher wanted her to prepare GSP activities whatever 
topics she wished. She chose the congruence as a subject of geometry instruction. 
Her activity is given Figure 1. 
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Figure 1: Handan’s Activity  

The content of her activity was about congruence. She decided to plan her activity 
for constructing the concept of congruence. As regards to the activity, the student 
knows the aim of the subject (step 1) and the concepts related to the subject (step 
2). Handan gave directions to the students in her activity, in general. Therefore the 
student follows the instructions and carries on step by step.  Afterwards, she gave 
two segments as AB and KL. She demonstrated the length of AB and KL segments 
(step 3-4). In the next step of the activity, she wanted students to compare the 
length of AB segment with KL segment.  She asked whether the students call a 
common name to these segments (step 5) and explained it simply (step 6). 
Subsequently, she gave two angles and its measurements (step 7-8). She told the 
angles have the same measurement (step 9) and asked what the common name of 
the angles is (step 10). Later she constructed two triangles (ABC and KLM) and 
asked the students in what conditions they are congruent (step 11). Later on she 
showed the conditions of the congruence (step 12) and measurements of the 
triangles (step 13-14-15-16). In following steps, she paired each corners of the 
triangles and animated them (step 17-18-19). Finally, she drew the students’ 
attention for the coincidence of triangles and demonstrated this (step 20-21).  

When her activity arranged was assessed via the so-called evaluation criteria in Table 
2, it was seen that the activity was connected to mathematics standards organized 
by Ministry of National Education (MNE) in Turkey, suited approach to mathematics 
topics -to explain congruence of triangle- with respect to 10th grade but it was too 
simple and like 8th grade level. It was provided conceptual development, also clear 
but not engaged the students in real life situations and interdisciplinary connections. 
It is useful for constructing the concept of congruence but not provide satisfactory 
knowledge. It wasn’t prepared for improving the students’ problem solving skills 
also. Handan utilized the mathematical language adequately. In respect of 
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technicality, the activity is good.  Each step’s button is made as hide/show button.  
The 17th and 19th steps’ button have the same function, so one of them is needless. 
The activity hasn’t got any other technical problem.  

Afterwards she had done activity; the post-interview was carried out with her and it 
was given her comments as follows:  

Researcher : What are the GSP aims in mathematics learning environment? 
Handan : It provides the students learn geometrical concepts…their problem 

solving skills are improved and the concepts are visualized.  
Researcher : Which students’ skills are able to improve by GSP activities? 
Handan : The students’ spatial thinking…. and problem solving skills are 

improved.  
Researcher : What do you take into account while the GSP activities are 

composed? 
Handan : It should be interesting…. appropriate for the students’ cognitive 

level and the students’ opinions can be taken while the activities are 
prepared. 

Researcher : How can you assess the students with the GSP activities? 
Handan : The students can be able to do the applications involved in GSP 

and these are evaluated. 

Considering her statements, it is seen that her views changed after training sessions 
and her activity. She has primarily information about GSP and she awakes of what 
taking into account while the GSP activities are composed. 

Mualla’s Case  

Mualla is also working as an assistant teacher in private teaching institution for a 
year. In time of the pre-interview, she gave responses as follows:  

Researcher : What are the GSP aims in mathematics learning environment? 
Mualla : …It constitutes long lasting learning in math lessons and provides 

the teachers and the student drawing figures, preparing animations. 
Researcher : Which students’ skills are able to improve by GSP activities? 
Mualla : GSP improves the students’ spatial thinking skills.  
Researcher : What do you take into account while the GSP activities are 

composed? 
Mualla :  It should be interesting…  
Researcher : How can you assess the students with the GSP activities? 
Mualla : I don’t know…  

In the analysis of this interview, she determined which skills improved and what she 
pays attention during the GSP activities are composed. Besides it is seen that 
Mualla’s responses are similar to the Handan’s statements.  

After training sessions, the researcher wanted her to prepare GSP activities whatever 
topics she wished. She chose the similarity as a subject of geometry instruction. The 
activity involved is given Figure 2. 
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Figure 2: Mualla’s Activity  

Mualla’s activity deals with similarity of triangles. She tried to carry out her activity 
for constructing the concept of similarity. According to her activity, she 
acknowledged that the students have little knowledge about the subject. Mualla 
generally gave directions to the students in her activity, as Handan did. However, her 
activity didn’t similar to in terms of following the instructions step by step. In the 
beginning of the activity, she mentioned few real-life examples to the students about 
similarity and then she passed the similarity between geometrical concepts. She gave 
two segments, like Handan, and she compared the length of them under the first 
button. The second button shows the students the ratio of the lengths of the 
segments.  After that, the definition -geometrical ratio and geometrical proportion- 
was given, and demonstrated. Then, she compared the measures of each angle of 
the triangles and mentioned the coincidence of each angle. Afterwards, she showed 
and compared the length of sides of the triangle and stated whether the sides of both 
triangles have a ratio or not. Lastly, she defined a stable ratio, as the ratio of 
similarity. 

When her activity organized was assessed by means of the evaluation criteria in 
Table 2, it was seen that the activity was overlapped mathematics standards 
organized by MNE in Turkey, partly suited approach to mathematics topics -to 
explain similarity of triangle- with respect to 10th grade. It was provided conceptual 
development, but not connected to the students in real life situations and 
interdisciplinary connections. Her activity was clear and understandable but it was 
also towards 8th grade and too simple. It wasn’t also provides sufficient knowledge. 
It wasn’t prepared for improving the students’ problem solving skills also. Mualla 
used the mathematical language few adequately. In respect of technicality, the 
activity is not bad. Each step’s button was made as hide/show button, as Handan 
did. It didn’t include enough animation and demonstration. Finally it was said that, 
the activity hasn’t got any technical problem.  

After she had done activity; her comments during the post-interview was given as 
follows:  

Researcher : What are the GSP aims in mathematics learning environment? 
Mualla : It provides the students learn geometrical concepts and problem 

solving, proof geometrical theorems. In addition to, it can be long 
lasting learning.  
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Researcher : Which students’ skills are able to improve by GSP activities? 
Mualla  : The students’ spatial thinking was improved.  
Researcher : What do you take into account while the GSP activities are 

composed? 
Mualla  : It should be appropriate the students’ cognitive level and the 

mathematics standards  
Researcher : How can you assess the students with the GSP activities? 
Mualla : It can be ask some question in GSP aiming at determining whether 

they learned the geometric concepts. We expect that the students 
reveal the relationships between geometric concepts. 

As her statements, she increases information about GSP. It follows from her 
responses that her point of view enlarged after training sessions. She encouraged 
and determined carefully what she does with GSP in mathematics learning 
environment after she prepared activities herself. 

DISCUSSION AND CONCLUSION 

In this study, the data indicated that Dynamic Geometry Software (DGS) is 
importance for in geometry education. Generally speaking, Handan and Mualla 
learned some properties of the GSP and their views look like. At the end of the 
study, they realized how they can use GSP prepare the activities on GSP. It is 
pleasing a finding. As the case of Handan, she gave directives detailed in her activity. 
Although she expected that the students said the concept of congruence, this 
concept was given by her at the beginning of the study. As the other case, Mualla 
set out the similarity proportion when she prepared her activity.  Both of them did 
not mention the kinds of congruence and similarity. They may be encouraged that 
the students found the kinds of its. However, these activities were regular with 
regard to visual. Their activities did not include assessment. As Key Curriculum 
Press (2001) mentioned, teachers can use GSP to create worksheets, exams, and 
reports by exporting GSP figures and measurements to spreadsheets, word 
processors, other drawing programs, and the Web. These results indicate that DGS 
is important in teacher education and DGS training must be in non-thesis graduate 
education in a way of detailed.   
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THE DESIGN OF NEW DIGITAL ARTEFACTS AS KEY FACTOR 

TO INNOVATE THE TEACHING AND LEARNING OF 

ALGEBRA: THE CASE OF ALNUSET 

G. Chiappini, B. Pedemonte  

Istituto per le Tecnologie Didattiche – CNR Genova 

The integration of CAS systems into school practices of algebra is marginal. To 

integrate effectively digital technology in the teaching and learning of algebra, it is 

necessary to go beyond the experience of CAS and of their instrumented techniques 

and to face the design of new artefacts. In this paper we discuss design problems 

faced in the development of a new digital artefact for teaching and learning of 

algebra, the Alnuset system. We present the key ideas that have oriented its design 

and the choices we have worked out to instrument its incorporated algebraic 

techniques. We compare the quantitative, symbolic and functional instrumented 

techniques of Alnuset with those of CAS highlighting crucial differences in the 

teaching and learning of algebra. 

Keywords: Alnuset, Instrumented technique, CAS, Algebraic learning 

INTRODUCTION 

In the last 15 years a scientific debate on the role of technology in supporting 
teaching and learning processes in the domain of algebra has been going on. This 
debate originates from research studies carried out in different countries with the 
purpose of studying the use of Computer Algebra Systems (CAS) in school contexts. 
In particular, near benefits (Heid, 1988, Kaput, 1996, Thomas, Monaghan and Pierce, 
2004) obstacles and difficulties have been identified in using this technology by 
students and teachers (Mayes, 1997, Drijvers, 2000, Drijvers, 2002, Guin & Trouche, 
1999). Results of these research works (Artigue, 2005) highlight that the integration 
of CAS systems into the school practice of algebra remains marginal due to different 
reasons. CAS expands the range of possible task-solving actions. As a matter of fact, 
techniques involved in a CAS (instrumented techniques) are in general different from 
those of the paper and pencil environment. Managing the complexity of CAS 
instrumented techniques and highlighting the potential offered by the machine to the 
student is hard work. As shown by some experiments (Artigue, 2005), CAS use may 
cause an explosion of techniques which remain in a relatively simply-crafted state. 
Moreover, any technique that goes beyond a simple, mechanically learnt gesture, 
should be accompanied by a theoretical discourse. For the paper and pencil 
techniques this discourse is known and can be found in textbooks. For instrumented 
techniques it has to be built and its elaboration raises new, specific difficulties. Even 
if the use of CAS seems fully legitimate in the class, in general, instrumented 
techniques cannot be institutionalised in the same way as paper and pencil ones 
(Artigue, 2005). 
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THE RATIONALE 

To frame the results carried out by these research studies and the complexity of the 
processes involved in the educational use of CAS, some French researchers 
(Lagrange 2000, Artigue, 2002, Artigue, Lagrange, Guin and Trouche, 2003) have 
elaborated a theoretical framework, named 'instrumental approach', integrating both 
the ergonomic theory (Rabardel, 1995) and the anthropological theory (Chevallard, 
1992). The ‘instrumental approach’ provides a frame for analyzing the processes of 
instrumental genesis both in their personal and institutional dimensions, and the 
effect of instrumentation issues on the integration of CAS in the educational practice. 
Using this framework, Artigue observes that CAS are extremely effective from a 
pragmatic standpoint and for this reason professionals (mathematicians, engineers..) 
are willing to spend time to master them (Artigue, 2002). At pragmatic level the 
effectiveness often comes with the difficulty to justify, at a theoretical level, the 
instrumented techniques used. In particular, this is true for users who do not fully 
master mathematical knowledge and techniques involved in the solution of the task. 
As a consequence, the epistemic value of the instrumented technique can remain 
hidden. This can constitute a problem for the educational context where technology 
should help not only to yield results but also to support and promote mathematical 
learning and understanding. In educational practice, techniques should have an 
epistemic value contributing to the understanding of objects involved. “Making 

technology legitimate and mathematically useful from an educational point of view, 

whatever be the technology at stake, requires modes of integration that provide a 

reasonable balance between the pragmatic and the epistemic values of instrumented 

techniques" (Artigue, 2007, p. 73). These results might account for the 
marginalization of CAS integration into the school algebraic practices. For some 
researchers, to integrate digital technology effectively in the domain of algebra, it is 
necessary to go beyond the experience of CAS and of their instrumented techniques 
and to face the design of new artefacts. As underlined by Monaghan (2007) up to 
now CAS-in-education workers have paid little attention to design issues, preferring, 
in general, to work with the design supplied by CAS designers (Monaghan, 2007). 
Moreover, it should be noted that no comparison between the design of CAS and of 
technological tools for education has been developed so far. This article aims at 
pointing out design issues that can effectively support teaching and learning 
processes in algebra. This goal will be pursued considering the design of ALNUSET 
(ALgebra on the NUmerical SETs), a system developed to improve teaching and 
learning of crucial topics involved in the mathematical curricula such as algebra, 
functions and properties of numerical sets. In particular, in this article we compare 
design aspects of Alnuset and of CAS and we highlight the relevance of differences 
in their instrumented techniques for the teaching and learning of algebra. 

PROBLEMS OF DESIGN IN DEVELOPING NEW DIGITAL ARTEFACTS 

Going beyond the design of CAS requires new creative ideas to instrument 
techniques for mathematical activity different from those of CAS. The advent of both 
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the dynamic geometrical artefacts and of spreadsheets has evidenced that even a 
single creative idea can determine a new typology of innovative artefacts. This can 
occur when new creative ideas allow to instrument mathematical techniques 
characterizing them with new operative and representative dimensions such as the 
drag of the variable point of a geometrical construction, as in the case of dynamic 
geometrical software, or the automatic re-computation of formulas of the table, as in 
the case of spreadsheet. Moreover, when a technique must be instrumented on the 
basis of an idea, various types of design problems emerge. They regard the way tasks 
and responsibilities have to be distributed between user and computer and the 
management of the interactivity, namely the operative modalities of the input by the 
user, the representation of the result by the computer (output), the visualisation of 
specific feedback to support the user action or to accompany the presentation of the 
result. Moreover, problems of design regard also the way in which the instrumented 
techniques have to be connected between each other. The way these problems are 
solved affects the accessibility of techniques, their usefulness for the task to be 
solved, the meaning that the instrumented technique evidences in the interaction, the 
discourse that can be developed about it. Hence, the way these problems are solved 
affects the balance between pragmatic and epistemic values of instrumented 
techniques within the didactical practice and this can affect mathematics teaching and 
learning. The anthropological framework is the theoretical tool used to analyse the 
way in which techniques are implemented and their effectiveness on the educational 
level. Ideas are evaluated on the base of this framework. We discuss these general 
assumptions in the domain of algebra referring to Alnuset System. 

ALNUSET: IDEAS AND CHOICE OF DESIGN  

ALNUSET is a system designed, implemented and experimented within the ReMath 
(IST - 4 - 26751) EC project that can be used to improve the teaching and learning of 
algebra at lower and upper secondary school level. The design of ALNUSET is based 
on some ideas that have oriented the realisation of the three, strictly integrated  
components: the Algebraic Line component, the Algebraic Manipulator component, 
and the Function component. These three components make available respectively  
techniques of quantitative, symbolic and functional nature to support teachers and 
students in developing algebraic objects, processes and relations involved in the 
algebraic activity. In the following we present the main ideas that have oriented the 
realisation of the three components of Alnuset and illustrate the choices and decisions 
taken to instrument algebraic techniques so that an appropriate balance between their 
epistemic and pragmatic values can emerge when used in the educational practice. 

Algebraic line component 

The main idea in the design of the Algebraic line component is the representation of 
algebraic variables on the number line through mobile points associated to letters, 
namely points that can be dragged on the line with the mouse. In this component the 
user can edit expressions to operate with. The computer automatically computes the 
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value of the expression on the basis of the value of the variable on the line and it 
places a point associated to the expression on the algebraic line. When the user drags 
the mobile point of a variable, the computer refreshes the positions of the points 
corresponding to the expressions containing such a variable in an automatic and 
dynamic manner. This is possible only thanks to the digital technology that allows to 
transform the traditional number line into an algebraic line. The following two figures 
report the representation of a variable and of an algebraic expression on the lines of 
this component. Note that the presence of two lines is motivated by operative 
necessities regarding the use of the algebraic editor based on geometrical models that 
is available in this component. This editor is not considered in this report. 

 

The drag of the variable 

x determines the 

dynamic movement of 

the expression 

containing it   

Through its visual feedback, this technique can be used either to explore what an 
expression indicates in an indeterminate way or to compare expressions. The design 
of this component is associated to every point represented on the line by a post-it. 
The computer automatically manages the relation among expressions, their associated 
points and post-it. The post-it of a point contains all the expressions constructed by 
the user that denote that point. By dragging a variable on the line, dynamic 
representative events can occur in a post-it. They might be very important for the 
development of a discourse concerning the notions of equality and equivalence 
between expressions. As a matter of the fact, the presence of two expressions in a 
post-it may mean: 

A relationship of equality, if taking place at least for one value of the variable during 
its drag along the line  

A relationship of equivalence, if taking place for all the values assumed by the 
variable when it is dragged along the line. 

A relationship of equivalence with restrictions, if taking place for every value of the 
variable when it is dragged along the line, but for one or more values, for which 
one of the two expressions disappears from the post-it and from the line. 

 

The expressions x+(x+1) and 2*x+1 
are equivalent, because they refer to 
the same point on the Algebraic line 
and they are contained in the same 
post-it whatever the value of the x 
variable is during the drag. 

 

Moreover, the algebraic line component has been designed to provide two very 
important instrumented techniques for the algebraic activity, i.e. for finding the roots 
of polynomial with integer coefficients and for identifying and validating the truth set 
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of algebraic propositions. The root of a polynomial can be found dragging the 
variable on the algebraic line in order to approximate the value of the polynomial to 
0. When this happens, the exact root of the polynomial is determined by a specific 
algorithm of the program and it is represented as a point on the line.  

   

This technique, that can be controlled by the user through his visual and spatial 
experience, is effective not only at a pragmatic level but also at an epistemic level, 
because it can concretely support the development of a discourse on the notion of 
root of a polynomial, as value of the variable that makes the polynomial equal to 0. 
The truth set of a proposition can be found through the use of a specific graphical 
editor. Let us consider the inequation x2-2x-1>0, that once edited, is visualised in a 
specific window of this component named “Sets”. Once the root of the polynomial 
associated to the inequation has been represented on the line, a graphic editor can be 
used to construct its truth set (see the figure).  

Once the truth set of a proposition has been edited, it can be validated using a specific 
feedback of the system. In the set window propositions and numerical sets are 
associated to coloured (green/red) markers that are under the control of the system. 
The green/(red) colour for the proposition means that it is true/(false) while the 
green/(red) colour for the numerical set means that the actual variable value on the 
line is/(is not) an element of the set. Through the drag of the variable on the line, 
colour accordance between proposition marker and set marker allows the user to 
validate the defined numerical set as truth set of the proposition (see figure below). 
The validation process is supported by the accordance of colour between the two 
markers and by the quantitative feedback provided by the position of variable and of 
the polynomial on the algebraic line during the drag. 

  

 

 
Two open intervals on the line, respectively on the 
right and on the left side of the roots of the 
polynomial x2-2x-1, have been selected with the 
mouse. The system has translated the performed 
selection into the formal language. 
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This feedback offered by the system during the drag of the variable is important to 
introduce the notions of truth value and of truth set of an algebraic proposition and to 
develop a discourse on their relationships. All the described instrumented techniques 
that are specific of the Algebraic line component make a quantitative and dynamic 
algebra possible. 

Algebraic manipulator component  

The interface of this component has been divided into two distinct spaces: a space 
where symbolic manipulation rules are reported and a space where symbolic 
transformation is realised. 

 

This figure shows a part of the 

commands available with the 

interface and an example of 

algebraic transformation.  

The figure shows a 

characteristic of the 

interactivity of this 

manipulator: the selection of a 

part of an expression 

determines the activation of the 

commands of the interface that 

can be applied on it. This 

characteristic can help students 

to explore the systems of rule 

for the algebraic transformation 

and the effects they produce 

The main idea characterizing the design of the Algebraic Manipulator component is 
the possibility to exploit pattern matching procedures of computer science to 
transform algebraic expressions and propositions through a structured set of basic 
rules that are deeply different from those of the CAS. In CAS pattern matching 
procedures are exploited according to a pragmatic perspective oriented to produce a 
result of symbolic transformation that could be also very complex, as in the case of 
command like factor or solve. As a consequence, the techniques of transformation 
can be obscure for a not expert user. In the Algebraic Manipulator component of 
Alnuset pattern matching procedures have been exploited according to three specific 
pedagogical necessities. The first necessity is to highlight the epistemic value of 
algebraic transformation as formal proof of the equivalence among algebraic forms. 
To this aim we have designed this manipulator with a set of basic rules that 
correspond to the basic properties of addition, multiplication and power operations, to 
the equality and inequality properties between algebraic expressions, to basic logic 
operations among propositions and among sets. Every rule produces the simple result 
of transformation that is reported on the icon of its corresponding command on the 
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interface, and this makes the control of the rule and the result easy to control. 
Moreover a fundamental function of this component allows the student to create a 
new transformation rule (user rule) once this rule has been proved using the rules of 
transformation available on the interface. For example, once the rule of the 
remarkable product a2-b2= (a+b)*(a-b) has been proved, it can be added as new user 
rule in the interface a2-b2

!"(a+b)*(a-b) and it can successively be used to transform 
other expressions or part of them whose form match with it. Moreover, a specific 
command allows to represent every transformed expression on the algebraic line 
automatically. Through this command it is possible to verify quantitatively the 
preservation of the equivalence through the transformation, observing that all the 
transformed expressions belong to the same post-it when their variables are dragged 
along the line. These characteristics of the algebraic manipulator of Alnuset can have 
a great epistemic importance because they can be effectively exploited to support the 
comprehension of the algebraic manipulation in terms of formal proof of the 
equivalence between two algebraic forms. The second necessity is to support the 
integration of practice of quantitative and manipulative nature. In this manipulator 
three rules allow the user to import the root of a polynomial, the truth set of a 
proposition and the value assumed by a variable on the algebraic line from the 
Algebraic line component to be used in the algebraic transformation. For example the 
rule “Factorize” uses the root of polynomial found in the Algebraic Line to factorize 
it. The way in which this rule works, makes the factorization technique of  Alnuset 
different from that of CAS. In CAS this technique is totally under the control of the 
system, and the result can appear rather obscure for not expert users. In Alnuset, the 
factorization can be applied on the polynomial at hand only if its roots have been 
previously determined on the algebraic line. In Alnuset the distribution of tasks 
between user and computer and the way they interact, can contribute to understand 
the link between the factorization of a polynomial and its roots. The third necessity is 
to offer more powerful rules of transformation when needed for the activity and when 
specific meaning of algebraic manipulation have been already constructed. Two 
specific rules, also present in the CAS are available in this manipulator. They 
determine the result of a numerical expression and the result of a computation with 
polynomials respectively. These rules of transformation contribute to increase the 
pragmatic value of the instrumented technique of algebraic transformation in Alnuset 
and they can be used to introduce to the use of CAS  

Moreover, the technique of algebraic transformation has been instrumented in this 
manipulator to provide not expert users with cognitive supports in the development of 
specific manipulative skills. A first support is the possibility to explore, through the 
mouse, the hierarchical structure that characterises the expression or the proposition 
to be manipulated. By dragging the mouse pointer over the elements of the 
expression or proposition at hand (operators, number, letters, brackets…), as 
feedback the system dynamically displays the meaningful part of the expression or 
proposition determined by such pointer. In this way it is possible to explore all 
meaningful parts of an expression in the different levels of its hierarchical structure. 
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Another feedback occurs when a part of expression has been selected. Through a 
pattern matching technique, the system, as feedback, activates only the rule of the 
interface that can be applied on the selected part of expression. This is a cognitive 
support that can be used to explore the connection among the transformational rules 
of the interface, the form on which it can be applied, and the effects provided by their 
applications. 

Functions component 

The main idea characterizing the design of the Functions component is the possibility 
to connect a dynamic functional relationship between variable and expression on the 
algebraic line with the graphical representation of the function in the Cartesian plane. 
As a consequence, the interface of this component has been equipped with the 
Algebraic line and a Cartesian plane. This idea makes this component deeply 
different from other environment for the representation of function in the Cartesian 
plane. Through a specific command and the successive selection of the independent 
variable of the function, an expression represented on the Algebraic line is 
automatically represented as graphic in the Cartesian plane. Dragging the point 
corresponding to the variable on the algebraic line, two representative events occur:  

• on the algebraic line, the expression containing the variable moves accordingly 

• on the Cartesian plane, the point defined by the pair of values of the variable and 
of the expression moves on the graphic as shown in the following figure. 

This instrumented technique supports the integrated development of a dynamic idea 
of function with a static idea of such a notion (Sfard 1991). The functional 
relationship between variable and expression is visualized dynamically on the 
algebraic line through drag of the variable point, and statically in the Cartesian plane 
through the curve. The movement of the point along the curve during the drag of the 
variable on the algebraic line supports the integration of these two ideas, showing that 
the curve reifies the infinite couples of values corresponding to the variable and to the 
expression on the line. This instrumented technique can be very useful to orient the 
interpretation of the graphics on the Cartesian plane and to develop important 
concepts of algebraic nature.  
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For example, it contributes 
to assign an algebraic 
meaning to the intersection 
of two curves (for the value 
of the variable that 
determines the intersection, 
the two expressions are 
contained in the same post-it 
on the algebraic line) or to 
the intersection of a curve 
with the x-axis (in this case 
the expression is contained 
in the post-it of 0). 

Other examples are related to the construction of meaning for the sign of a function 
(in terms of the position of the corresponding expression on the line with respect to 
0), or to relationships of order among functions (in term of the respective position of 
the expressions on the algebraic line )  

CONCLUSIONS 

In this paper we have presented the main ideas that oriented the realisation of Alnuset 
and the choices we made to instrument specific functions of algebraic activity that 
can be useful for the teaching and learning of algebra. We have shown that the 
quantitative, symbolic and functional techniques available in the three environments 
of Alnuset to operate with algebraic expressions and propositions have characteristics 
that are deeply different from the instrumented technique of CAS. The technique of 
Alnuset was designed having in mind two types of user that are different from the 
target user considered by CAS designers. The former type of user is the student that 
is not an expert of the knowledge domain of algebra and that uses the instrumented 
techniques of Alnuset to learn it carrying out the algebraic activity proposed by the 
teacher. The latter type of user is the teacher that has difficulties to develop algebraic 
competencies and knowledge in students and that uses the instrumented technique of 
Alnuset to acquaint them with objects, procedures, relations and phenomena of 
school algebra. The technique of Alnuset was designed to be easily controlled during 
the solution of algebraic tasks, to produce results that can be easily interpreted and to 
mediate the interaction and the discussion on the algebraic meaning involved in the 
activity. The techniques of Alnuset structure a new phenomenological space where 
algebraic objects, relations and phenomena are reified by means of representative 
events that fall under the visual, spatial and motor perception of students and 
teachers. This contributes to provide an appropriate balance between the pragmatic 
and epistemic values of the techniques made available by Alnuset. In the 
phenomenological space determined by the use of the instrumented technique of 
Alnuset algebra can become a matter of investigation as evidenced by two papers 
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presented in group 4 by Trgalova J., Chiappini G., Robotti E: and  in group 2 by 
Pedemonte B. of this edition of CERME.  
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