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We describe the construct of a 4-year longitudinal efficacy study implementing 

dynamic mathematics software and wireless networks in Algebra 1 and 2 classrooms. 

We focus on student learning and motivation over time, and issues of effective 

implementation in establishing a longitudinal study. 

INTRODUCTION: BACKROUND TO DYNAMIC MATHEMATICS 

New forms of mathematics technology (e.g., dynamic geometry) can provide 
executable representations—representations that transform the mathematics made by 
students into a more tangible and exciting phenomenon (Moreno-Armella, Hegedus 
& Kaput, 2008). In particular, we have designed and used SimCalc MathWorlds® to 
transform students’ mathematical constructs into fascinating motion phenomena. 
Second, networks can intimately and rapidly link private cognitive efforts to public 

social displays. Consequently, students can each be assigned a specific mathematical 
goal (e.g., playing the part of a single moving character by making a graph with 
certain mathematical characteristics), which instantly links to public social display 
(e.g., the parade constituted by all characters moving simultaneously). This approach 
shifts the types of critical thinking that are possible in mathematics classrooms and 
transforms the role of instructional technology by integrating it into the social and 
cognitive dimensions of the classroom. 

Our connected approach to classroom learning highlights the potential of classroom 
response systems to achieve a transformation of the classroom-learning environment. 
Similarly other investigators have expanded their approaches to include devices that 
allow aggregation of mathematical objects submitted by students. (Stroup, Ares & 
Humford, 2005).  

SITUATED NEED 

Our proposed work addresses three essential needs: (i) the Algebra Problem (RAND, 
2002), (ii) the related problem of student motivation and alienation in the nation’s 
schools, especially urban secondary schools (National Research Council, 2003), and 
(iii) the widely acknowledged unfulfilled promise of technology in education, 
especially mathematics education (e.g., Cuban, 2001).  

An important analysis by the National Academies Institute of Medicine (National 
Research Council, 2003) of student motivation at the high school level reveals in 
painful detail what most high school teachers (and parents) know only too well: that 
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student motivation in high schools, and even more acutely in urban high schools, is 
an urgent and complex national problem. The report also recommends that high 
school courses and instructional methods need to be redesigned in ways that will 
increase adolescent engagement and learning. 

Ethnographical studies of high school students (Davidson & Phelan, 1999; Phelan, 
Davidson, & Yu, 1998) reveal a world of alienation with strongly negative responses 
to standard practices (Meece, 1991) and strong sensitivity to interactions with 
teachers and their strategies (Davidson, 1999; Johnson, Crosnoe & Elder, 2001; 
Skinner & Belmont, 1993; Turner, Thorpe, & Meyer, 1998). Negative responses, 
particularly as they are intimately connected with self image and sense of personal 
efficacy, can be deeply debilitating, both in terms of performance variables (Abu-
Hilal, 2000) as well as in the ability to use help when it is available (Harter, 1992; 
Newman & Goldin, 1990; Ryan & Pintrich, 1997). See the comprehensive reviews by 
Brophy (1998), Newmann (1992), Pintrich & Schunk (1996), and Stipek (2002). On 
the other hand, students exhibit consistently positive responses to alternative modes 
of instruction and content (Ames, 1992; Boaler, 2002; Mitchell, 1993), particularly 
those that build upon intrinsic instead of external motivation (Linnenbrink & Pintrich, 
2000). 

The literature on motivation in education and social situations in general has focused 
on intrinsic and extrinsic motivation with a great deal of debate (Sansone & 
Harackiewicz, 2000). Intrinsic motivation reflects the propensity for humans to 
engage in activities that interest them. Extrinsic motivation, such as rewards, can 
have an undermining effect and decrease intrinsic motivation, i.e., the reason why the 
person chose to want to do the activity in the first place (Deci, 1971). Yet both 
intrinsic and extrinsic motivation, as a key feature of participation in mathematics 
classrooms, have appeared to be an orthogonal field of inquiry to the development 
and instruction of content, with motivation hesitantly intersecting with education in 
the form of “motivational strategies,” incentivizing students to learn mathematics 
because it is “fun” or “applicable” to their life, through relevant contexts, e.g., sports 
or vocations.  

Relevance, unfortunately, is a somewhat indirect means to link motivation and 
mathematics—the link between immediate cognitive effort and later applications that 
may seem improbable to students. There is a more direct alternative. Students can 
become motivated because they want to participate more fully in what their 
classroom is doing now. The alternative, thus, is to link motivation and mathematics 
through participation.  

We advocate two radically new forms of participatory activity in technology-
enhanced environments:  

1. Mathematical Performances. These activities emphasize individual student 
creations, small group constructions, or constructions that involve coordinated 
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interactions across groups that are then uploaded and displayed, with some 
narration by the originator(s).  

2. Participatory Aggregation to a Common Public Display. These activities 
involve systematic variation, either within small groups, across groups, or both, 
where students produce functions that are uploaded and then systematically 
displayed and discussed to reveal patterns, elicit generalizations, expose or 
contextualize special cases, and help raise student attention from individual 
objects to families of objects.  

 

These activities aim at enhancing mathematical literacy, debate and coherent 
argumentation—all fundamental mathematical skills. The central point is that each 
requires and rewards students for cognitive engagement in producing tangible 
phenomena that are simultaneously phenomenologically exciting and mathematically 
enlightening. This happens not at some future time when mathematics can be applied 
to a career or personal goal; instead these activities draw students in and sustain their 
interest because they are exciting and enlightening in the moment, in the classroom. 
These activities create an intrinsic motivation context with a socio-cultural view to 
“motivation in context” (Hickey, 2003) that is also intrinsically mathematical, 
accomplishing a much more intimate intertwining of motivation and mathematics that 
can be typically accomplished in existing classrooms. 

 

PRIOR WORK 

SimCalc MathWorlds® creates an environment where students can be part of a family 

of functions, and their work contributes to the mathematical variation across this 
mathematical object. Consider this simple activity, which exemplifies a wider set of 
activity structures. Students are in numbered groups. Students must create a motion 
(algebraically or graphically) that goes at a speed equal to their group number for 6 
seconds. So, Group 1 creates the same function, Y=(1)X, Group 2, Y=(2)X, etc. 
When the functions are aggregated across the network via our software, students’ 
work becomes contextualized into a family of functions described algebraically by 
Y=MX (see Figure 1 below). Students are creating a variation of slope and in doing 
so this can help each student focus on their own personal contribution within a set of 
functions.  

At the heart of SimCalc is a pedagogical tool to manage classroom flow. This tool 
allows teachers to control who is connected to the teacher computer using a simple 
user interface, and choose when to “freeze” the network and aggregate students’ work 
or allow students to send a number of tries via the TI-NavigatorTM. In addition, 
teachers have control over which set of contributions (e.g., Group 1’s functions) and 
which representational perspectives (e.g., tables, graphs, motions) to show or hide. 
Thus, the management tool encapsulates a significant set of pedagogical strategies 
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supported by question types in existing curriculum materials to satisfy a variety of 
pedagogical needs, focus students’ attention depending on their progress, and 
promote discussion, reasoning and generalization in a progressive way at the public 
level. 

In our prior research, students build meaning about the overall shape of the graphs 
and have demonstrated gestures and metaphorical responses in front of the class 
when working on this activity. For example, in two entirely different schools, 
students have raised their hand with fingers stretched out (see Figure 1 below), and 
said it would look like a “fan.” In this socially-rich context, students appear to 
develop meaning through verbal and physical expressions, which we observe as a 
highly powerful way of students engaging and developing mathematical 
understanding at a whole group level. Various forms of formative assessment can 
said to be evident as each student’s work emerges in a public display, and 
representations can be “executed” (Moreno-Armella & Block, 2002) to test, confirm 
or refute ideas. These forms of reflection, enabled through particular question-types 
and classroom dialogue focused on the dynamic representations, can be attributed to 
students learning and resonate with established research on formative assessment 
(Black & William, 1998; Boston, 2002). 

 

 

Figure 1. Sample Function in SimCalc MathWorlds
®
 

 

Over the past ten years, over the course of three consecutive research and 
development projects (NSF ROLE: REC-0087771; REC-0337710; REC-9619102) 
and related projects at TERC (NSF REC-9353507), the SimCalc project has 
examined the integration of the Mathematics of Change and Variation (MCV) as a 
core approach to algebra-intensive learning. This work has led to a Goal 3 IERI-
funded study (NSF REC-0437861), led by SRI International, focusing directly on 
large-scale implementability and teacher professional development in TX, and a 
recently funded IES Goal 2 project in the high school grades (IES Goal 2 # 
R305B070430) focusing on longitudinal impact of our curriculum and software 
products distributed by Texas Instruments on their popular graphing calculators in 
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combination with a commercially available wireless network (TI-Navigator™ 
Learning system). 

The Scale-Up pilot work employed a set of SimCalc resources in a delayed-treatment 
design. Teachers were initially randomly assigned to one of two groups. An ANOVA 
of difference scores (again teacher nested within condition) was significant  
[F(1,282)=178.0, p<0.0001]. The effect size for the gain in the group that used 
SimCalc is 1.08. In our main study, which is a randomized controlled trial in which 
95 7th-grade mathematics teachers were randomly assigned to implement a 3-week 
SimCalc curriculum unit following training, our analyses show an effect size of 0.84 
(Roschelle, Tatar, Shectman et al., 2007). 

Prior work has documented statistically significant evidence for impact of SimCalc 
materials in connected “networked” environments with computers and calculators 
(Hegedus & Kaput, 2004) under multiple quasi-experimental interventions across 
grades 8-10 and college students demonstrating statistically significant increases 
(p<0.001) in student mean scores (effect=1.6) but with an even higher effect on the 
at-risk 9th grade population (effect=1.9). A major finding of our work was that 
critically important skills such as graphical interpretation were improved, i.e., 
cognitive transfer was evident. Recent studies show similar statistically significant 
results in terms of student learning and shifting attitudes towards learning 
mathematics in connected environments (Hegedus, Kaput, Dalton et al., 2007). We 
have also analyzed the changing participation structures using frameworks from 
linguistic anthropology (Duranti, 1997; Goffman, 1981). Our work has described new 
categories of participation in terms of gesture and language (Hegedus, Dalton, 
Cambridge et al., 2006) new forms of identity (Hegedus & Penuel, 2008), and 
theoretical advances in dynamic media and wireless networks (Hegedus & Moreno-
Armella, 2008; Moreno-Armella et al., 2008).  

 

DESIGN ASPECTS OF EFFICACY WORK 

In this context, our research program (funded by the US Department of Education, 
IES Goal 2 # R305B070430) builds on prior work to examine this problem. It is 
focused on outcomes in terms of both grade-level learning gains and longitudinal 
measures that relate to students’ progress and motivation in mathematics across the 
grades in Algebra 1 and 2 classrooms. 

SimCalc combines two innovative technological ingredients to address core 
mathematical ideas: Software that addresses content issues through dynamic 
representations and, wireless networks that enhance student participation in the 
classroom. We have begun to develop materials that fuse these two important 
ingredients in mathematically meaningful ways and developed new curriculum 
materials to replace core mathematical units in Algebra 1 (8-12 weeks) and Algebra 2 
(4-8 weeks) at high school. We are measuring the impact of implementing these 
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materials on student learning (high-stakes State examinations in Massachusetts (MA), 
USA) and investigating whether one or multiple involvements in this type of learning 
environment over the course of their high school years affects their motivation to 
continue studying mathematics effectively and enter STEM-career trajectories. 

Our work is conducted in eight school districts in MA offering a wide variety of 
settings in terms of performance on State exams and Socio-Economic Status (SES). 
Our treatment interventions are in 9th and 11th grade classrooms (Algebra 1 then 2) 
but we will also track some students when they are in 10th and 12th grade collecting 
simple questionnaire data. Our study is a small-scale cluster randomized experiment 
where we cluster at the classroom level, randomly assigning two classrooms in each 
school to treatment in our main studies (total of 28 classrooms and a. 500 students in 
each main study). 

We are using two instruments comprised of standardized test items to measure 
student’s mathematical ability and problem-solving skills before and after each 
intervention. We are also collecting survey data on student’s attitude before during 
and after the intervention. We are administering these tests and surveys at similar 
times (with respect to curriculum topics covered) in treatment and control 
classrooms. Video data from periodic classroom visits are being analyzed using 
participation frameworks from prior work and triangulated with variations in student 
survey data on attitude. 

We are using suitable statistical methods to assess gain relative to the control groups, 
and between-cluster variation using mixed-Hierarchical Linear Modeling. We are 
also collecting survey and classroom observation data to assess changes in attitudes 
and participation, and daily logs by teachers to monitor fidelity of implementation. 

We have completed our first year of 4 years work with our first cohort of students 
that we will track for the duration of their high school career and will present initial 
findings from our pilot study and challenges we have addressed in sampling and 
establishing a longitudinal program of research. We focus on results from factor 
analyses of our survey instruments on student and teacher attitude and correlations 
with student learning. Following a minimal effect size in our pilot study, we aim to 
present findings for improving effective implementation from analyses of teacher 
daily logs and classroom video.  

Such methodologies build a comprehensive program for evaluating how prior 
findings (briefly highlighted above) can scale to larger implementations whilst being 
cognizant of issues of fidelity. Our ongoing work and preliminary analyses report of 
the potential effect on outcome measures such as student learning and motivation. 
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ENHANCING FUNCTIONAL THINKING USING THE 
COMPUTER FOR REPRESENTATIONAL TRANSFER 

  Andrea Hoffkamp 

University of Technology Berlin 

The area of functional thinking is complex and has many facets. There are several 

studies that describe the specific difficulties of functional thinking. They show that the 

main difficulties are the transfer between the various representations of functions, 

e.g. graph, words, table, real situation or formula, and the dynamic view of 

functional dependencies (process concept of a function). Interactive Geometry 

Software allows the visualization of the dynamic aspect of functional dependencies 

simultaneously in different representations and offers the opportunity to experiment 

with them. The author presents and discusses the potential of two interactive learning 

units that focus on the dynamic aspect of functional thinking in a special way. Some 

preliminary results from a first adoption of one of the activities in class are 
presented. Resulting research questions and plans for further research are stated. 

Keywords: Functional thinking, representational transfer, Interactive Geometry 
Software, Interactive learning unit, empirical study. 

THEORETICAL BACKGROUND 

Functional Thinking – Concept and Relevance 

In Germany the term 'functional thinking' was first used in the 'Meraner Reform' of 
1905. The 'education to functional thinking' was a special task of the reform. 
Functional thinking was meant in a broad sense: As a common way to think which 
affects the whole mathematics education (Krüger 2000). In the 60s and 70s the 
impact of functional thinking in the above sense on the mathematics curriculum in 
Germany was very low. Since the 80s it regains importance although not in the broad 
sense of the Meraner Reform. A common definition of functional thinking derives 
from Vollrath (1989): 'Functional thinking is the typical way to think when working 
with functions'. Functional thinking in this sense is strongly connected to the concept 
of function. In the german mathematics curriculum the 'idea of functional 
dependency' is one of five central competencies, which form the mathematics 
education (Kultusministerkonferenz 2003). 

The concept of function and functional thinking includes many aspects and 
competencies: On one hand functional dependencies can be described and detected in 
several representational systems like graphs, words, real situations, tables or 
formulas. On the other hand the nature of functional dependencies has different 
characteristics (Vollrath 1989 or Dubinsky, Harel 1992): 

• Functional dependency as a pointwise relation (horizontal, static aspect) 
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• Functional dependency as a dynamic process (aspect of covariation and 
change, vertical aspect) 

• Functions viewed as objects 

Many studies (e.g. Janvier 1978, Müller-Philipp 1994, Swan 1985, Kerslake 1981) 
show the following main difficulties and misconceptions concerning functional 
thinking: 

The interpretation of functional dependencies in different representations and the 
representational transfer is a main difficulty. Especially the interpretation of 
functional dependencies in situations and the transfer to e.g. the graphical 
representation and vice versa causes problems. For example: graphs are often 
interpreted as photographical images of real situations. Another main difficulty is the 
aspect of covariation or the dynamic view of a functional dependency. This is evident 
in problems with the interpretation of slopes or distance-time graphs for instance. 

An illustrative example 

The above difficulties were affirmed by written tests the author gave to either 10th 
class students and to university students who just started their study on mathematics. 
Based on the problems in the test the interactive learning units, which we describe 
below, were built. Figure 1 shows one of the problems (see: Schlöglhofer 2000) from 
the tests. 

 

Fig. 1: The dashed line moves rightwards. F(x) is the area of the grey part of the 
triangle dependent on the distance x. Which graph fits and why? 

Only 66% of about 100 university students made their cross at the graph in the 
middle. Giving the problem to sixteen 9th and 10th grade high school students, 
resulted in only 37% correct answers. The main mistake was to put a cross at the 
graph on the right side. The reason for this choice was usually given by a statement 
like: The area [of the graph on the right side] is just like the area F(x). 

The graph is interpreted as a photographical image of the situation. The specific 
difficulty is the transfer between situation and graphical representation, which is 
caused by the inability to interpret the functional dependency dynamically 
(covariation of x and F(x)). 
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The chances of Interactive Geometry Software 

When using the computer in classrooms on the topic functions one might think 
immediately of Computer Algebra Systems (CAS). Most studies about the use of the 
computer when working with functions are about using CAS, e.g. Müller-Philipp 
(1994), Weigand (1999), Mayes (1994). While CAS is input/output based and gives 
back information and changes asynchronously, the use of Interactive Geometry 
Software (IGS) allows interactivity and gives immediate response. This difference 
will be used to emphasize the dynamic view of functional dependencies. 

IGS offers the possibility to create a platform for experimentation with functional 
dependencies. Mathematical objects can be dynamically visualized by using the 
dragging mode and the covariation aspect of functional dependencies becomes visual. 
Moreover it is possible to interactively connect different representations of functions. 
Mental operations like the representational transfer can be externally presented, 
which is a chance to enhance relational understanding. 

Especially the software Cinderella includes a functional programming language 
called CindyScript. This enables the teacher to create learning units and own teaching 
material like the ones described below by using standard tools (Kortenkamp 2007). 

DESIGN OF THE ACTIVITIES AND CONCEPTUAL BASIS 

Main research question 

The learning activities are designed with regard to the following research question: 

Is it possible to enhance the dynamic aspect of functional thinking by dynamically 
visualizing functional dependencies simultaneously in different representations and 
by giving the opportunity to experiment with them? 

General design ideas and concept 

We developed two interactive learning units (joint work with Andreas Fest). The 
learning units consist of single Java applets embedded into a webpage and can be 
used without prior installation with a standard Internet browser. The applets are built 
with the IGS Cinderella and are accessible by using the links on the webpage 
http://www.math.tu-berlin.de/~hoffkamp. 

Figure 2 shows the typical design of a learning unit. Next to the applet there is a short 
instruction on how to use the applet and some work orders. The students are asked to 
investigate and describe the functional dependency between the distance A-D and the 
dark (if coloured: blue) area within the triangle. The applet in Figure 2 allows the 
following actions:  

• Moving point D and watching the corresponding point in the graph.  

• Moving points B and C, which changes the triangle, and watching the effects 
on the graph. 
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Fig. 2: Interactive learning unit 'Dreiecksfläche' ('Area of a triangle'). 

The learning activities have the following conceptual and theoretical ideas in 
common: 

Connection situation-graph: The starting point is a figurative description of a 
functional dependency, which is simultaneously connected to a graphical 
representation. The graphical representation was chosen, because it relates to the 
covariation aspect in a very eminent way. As analysed by von Hofe (1995) students 
are able to establish 'Grundvorstellungen' (GV) more easily when an imaginable 
situation is given. GV's are mental models connecting mathematical concepts, reality 
and mental concepts of students. Rich GV's of the functional dependencies are 
necessary to succeed in problem solving processes. 

Language as mediator: The students are asked to verbalise their observations in their 
own words. Janvier (1978) emphasises the role of the language as a mediator between 
the representations of the functional dependency and the mental conceptions of the 
students. 

Active processing assumption: According to the cognitive theory of multimedia 
learning of Mayer (2005) humans are actively engaged in cognitive processing in 
order to construct a coherent mental representation. The activities are conceptualized 
as attempt to assist students in their model-building efforts. Therefore the activities 
allow to experiment with different representations of the functional dependencies. At 
the same time the actions of the user are limited to focus on the dynamic view of the 
functional dependencies. 

Two levels of variation: The activities allow two levels of variation. First, one can 
vary within the given situation. This visualizes the covariation aspect. Secondly, one 
can change the situation itself and watch the effects on the graph. We will call this 
meta-variation. Meta-variation allows the user to investigate the covariation in 
several scenarios. It changes the functional dependency itself and allows a more 
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global view of the dependency. Therefore it refers to the object view of the function. 
To understand the covariation aspect one needs to find correlations between different 
points of the graph in order to describe changes. This requires a global view of the 
graph. For example the property 'strict monotony' of a graph is a global property and 
therefore refers to the object view of a functional dependency. But to describe it in 
terms of 'if x>y then f(x)>f(y)' one has to understand the covariation of different 
points of the graph. 

Low-overhead technology: To work with the interactive units there is no special 
knowledge of the technology necessary. The activities make use of the students' 
experience with Internet browsing (actions like dragging, using links, using buttons 
etc.). The low-overhead technology allows the students (and the teachers) to work 
directly on the problems without special knowledge of the software and the software's 
mathematical background. This is important especially with regard to time economy. 

Practicability: The activities are designed with respect to their practicability. Besides 
the activities learning material in form of a worksheet is provided. The activities can 
be employed in class without great effort in a block period of 2x45 minutes. 

Learning unit 'Die Reise' ('The journey') 

On the basis of the conceptional ideas above the learning activity 'Die Reise' was 
developed. Figure 3 shows the first part of the activity. Like the learning unit 
'Dreiecksfläche' it is adapted from a problem (see: Swan 1985) the author gave to 
university students and 10th grade students within a written test. The unit consists of 
three parts. Part one (Fig. 3) is about the transfer situation-graph. A car advances 
from Neubrandenburg (top of the map) to Cottbus (bottom of the map). The graph 
shows the corresponding distance-time graph for the journey. The cars are movable in 
the map and the graph. The students are asked to mark the positions A-F on the map 
with the flags. 

Part two of the learning unit (without Figure) refers to the first level of variation 
(visualization of the covariation aspect in the given situation). It shows the distance-
time graph of part one again together with the corresponding velocity-time graph. 
Again there are movable cars in both graphs. The applet is about the transfer between 
two graphs with emphasis on the dynamic view of functional dependencies (here: 
slopes). The work orders aim at interpreting the slopes in the distance-time graph and 
see how the velocity-time graph corresponds to the slopes. 
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Fig. 3: Part one of the learning unit 'Die Reise' ('The journey'). Using the 'Prüfe 
Lösung'-button ('Check your solution'-button) reveals the text 'Flags C, D, E and F 
are in the wrong position'. 

Figure 4 shows the applet within part three of the learning activity. It refers to the 
second level of variation (meta-variation). Besides moving the cars in both graphs 
one can move the bars in the velocity-time graph vertically and change the width of 
the bars while watching the changes of the corresponding distance-time graph. 

 

Fig. 4: Level of meta-variation in part three of the learning unit 'Die Reise'. 

A FIRST STUDY 

Setting and methods 

The learning unit 'Dreiecksfläche' was tested with 19 secondary school students of 
age 14-15 (10th class) in a block period of 2x45 minutes. The teacher characterized 
the learning group as being rather slow. The students were not prepared to either the 
topic (they were not currently working with functions in class) or the special use of 
technology. A worksheet was prepared which contained the Internet address of the 
learning unit and the questions to work on. The students had to start on their own 
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using the instructions of the worksheet. They wrote their answers and solutions on the 
worksheet. To provoke discussion and first reflection about the problems two or three 
students worked together. Afterwards the solutions were discussed in class. The 
results of the study are based on student observations during their work with the 
computer, general impression of the discussion in the class, a short written test and a 
questionnaire. All material can be found on www.math.tu-berlin.de/~hoffkamp. 

The study was conceived as a preliminary study with the following aims: 

• Test the learning unit and work it over for further studies. 

• Specify further research questions. 

• Create a study design for a larger study based on the experiences made. 

Results and discussion 

The results mainly have qualitative character and will be presented by commenting 
on the observations made, by picking confirming statements of the students' answers 
on the questionnaire and by presenting some results from the written test. 

Computer-aided work and work with the activities in general: 

The observations clearly showed that the concept of low-overhead technology was 
successful in the sense that it was no problem to handle the activities without further 
instructions by the teacher although the students never used the computer in this 
specific way before. The design of the units made it possible to introduce a 'new' 
topic in a very short period of time. 

The use of the computer had a very positive effect on the students' motivation. This is 
not only caused by the fact that the use of the computer in math classes was new for 
most of the students but also from the fact that the students appreciated to work 
autonomously. The students pointed out that the autonomy allowed them to find their 
own tempo and follow their own train of thoughts. This is confirmed by the following 
statements on the questionnaire: 

Question: Is there something special you like when working with the computer? 

Answer 1: It is less monotonous and the lesson is organized differently. You learn by 
means of a different learning aid, which allows a better imagination. The studious 
atmosphere is more comfortable. You do not have to follow the group's train of thoughts. 

Answer 2: That I can work independently (without teacher). One can use his own 
mistakes to come to the right result. 

Statements like answer 2 were made several times. The students had the impression 
that they were able to use their mistakes in a productive way, a statement which is 
worth to be studied in further research. Students also appreciate that the computer 
takes over actions like drawing, calculating etc., which increases the time to work on 
the problems themselves. 
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It was a strong observation that computer-aided work allowed for a better internal 
differentiation of the learner group. Slowly learning students asked the teacher for 
help more often than more advanced students, but they still worked independently for 
longer periods. But of course there is still a high need for reflection of the train of 
thoughts within the class to avoid establishment of wrong mental representations. 

Effects on functional thinking 

It was obvious during the discussion and while observing the students, that the 
applets – by limiting the actions allowed – forced the students to focus on the 
dynamic view of the functional dependency. 

The discussion of the results – which mainly consist of verbalisations of the 
properties of the functional dependency – ran pretty smooth. The students seemed to 
have created a mental image by using the applets. As an effect it was easy to 
communicate about the topic in the sense that the students were highly engaged in 
making contributions to the discussion. But it is still not clear what sort of mental 
image the students had created the more so as the verbalisations were mostly 
superficial. It only shows that working with the applets set a profound basis on which 
it seemed to be easy to continue to work on the topic. 

Figure 5 shows the results from a problem on the written test. The students had to 
sketch graphs describing the dependency between x and the grey area F(x). An 
answer was 'meaningful' when the graph was strictly increasing, but e.g. left and right 
turn were mixed up. 

 

Fig. 5: A problem from the written test with percentages of correct and meaningful 
graph sketches. 

As seen from the results in figure 5 the students by majority seemed to have created 
an appropriate mental concept concerning the dynamics of the functional dependency 
as far as the solution of problems like the one above is concerned. But it was still 
difficult to adapt the concept to other situations (here: other forms in line two of 
figure 5). Moreover the mistake to interpret graphs as photographical images nearly 
disappeared, but was still present in two or three student solutions. To find out more 
about the students' mental concept other approaches are necessary. 

The potential of the level of meta-variation in order to enhance the understanding of 
the dynamic aspect of the functional dependencies seems to be high. This is an 
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impression from student observations, class discussion and could be assumed when 
considering the following student statements: 

Question: Can you say what exactly you understood better by using the computer? 

Answer 1: How the graph changes when changing the triangle. 

Answer 2: I liked this form of figurative illustration that was given directly when changes 
were made because it is easier to understand something by watching it. 

Of course the above question implies that the students are able to reflect their own 
thinking, but it is only used to find out which parts of the activity were considered by 
the students as showing them something new. To prove the effectivity of meta-
variation further studies are needed. 

OUTLOOK 

The results of the first study give valuable hints for the direction of further research. 
In order to get deeper insights the learning unit 'Die Reise' was developed based on 
the experiences with the activity 'Dreiecksfläche'. It shall be used for more extensive 
tests. It is planned to record the computer actions and the student interactions with a 
camera integrated in the computer. The results will be available at CERME. 

The following research questions are of interest and will guide our future research: 

Main question: Is it possible to enhance the dynamic aspect of functional thinking by 
dynamically visualizing functional dependencies simultaneously in different 
representations and by giving the opportunity to experiment with them? 

Further questions: 

• Is it possible to enhance the dynamic view of functional dependencies faster or 
more sustainable by using the learning units? 

• Which elements of the applets have a positive effect on the dynamic view of 
functional dependencies? 

• Is it possible to distinguish types of students who get along better or worse 
with the learning units? How do slow learners deal with the units compared to 
more advanced students? 

• How can we use computer-based activities like these as diagnostic tools? 
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THE SYNERGY OF STUDENTS’ USE OF PAPER-AND-

PENCIL TECHNIQUES AND DYNAMIC GEOMETRY 

SOFTWARE  

Núria Iranzo, Josep Maria Fortuny 

UNIVERSITAT AUTÒNOMA DE BARCELONA, SPAIN 

This study is part of an ongoing research1 centered on the interpretation of 

students’ behaviors when solving plane geometry problems in Dynamic 

Geometry Software and paper-and-pencil media. Our theoretical framework 

is based on Rabardel’s (2001) instrumental approach to tool use. We seek for 

synergy relationships between students’ thinking and their use of techniques 

by exploring the influence of techniques on the resolution strategies. Our 

findings point to the existence of different  acquisition degrees of geometrical 

abilities concerning the students’ processes of instrumentation and 

instrumentalization when they work together in a computational and paper-

and-pencil media. In this report we focus on the case of a student. 

INTRODUCTION 

We report research on the integration of computational technologies in 

mathematics teaching, in particular on the use of Dynamic Geometry Software 

(DGS) in the context of students’ understanding of plane geometry through 

problem solving. We focus on the interpretation of students’ behaviors when 

solving plane geometry problems by analyzing connections and synergy 

among techniques used in both media, DGS and paper-and-pencil, and 

geometrical thinking (Kieran & Drijvers, 2006). Many pedagogical 

environments have been created such as Cinderella, Geometer’s Sketchpad, 

and Cabri Géomètre II. We focus on the use of GeoGebra (GGB) because it is 

a free DGS that also provides basic features of Computer Algebra Software. 

As said by Hohenwarter and Preiner (2007), the software links synthetic 

geometric constructions (geometric window) to analytic equations, coordinate 

representations and graphs (algebraic window). Our aim is to analyze the 

relationships between secondary students’ problem solving strategies in two 

environments: paper-and-pencil (P&P) and GGB. Laborde (1992) claimed that 

a task solved using DGS may require different strategies to those required by 

                                         

1 The research has been funded by Ministerio de Educación y Ciencia MEC-SEJ2005-02535, ‘Development 

of an e-learning tutorial system to enhance student’s solving competence’.  
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the same task solved with P&P; this fact has an influence on the feedback 

provided to the student.  

Our broadest research question aims at how the use of GGB in the resolution 

of plane geometry problems interacts with the students’ P&P skills and their 

conceptual understanding. We analyze and compare resolution processes in 

both environments, taking into account the interactions (student-content, 

student-teacher and student-GGB). In this report we focus on two research 

goals as being interpreted in the case of one student, Santi. We analyze this 

student’s instrumentation and instrumentalization processes, and we compare 

his resolution strategies when using P&P and GGB within each problem. In 

the whole research we work with a total of fourteen individual cases from the 

same class group and establish some commonalities and differences among 

them.   

THEORETICAL FRAMEWORK  

We first draw on the instrumental approach (Rabardel, 2001). According to 

Kieran and Drijvers (2006), a theoretical framework that is fruitful for 

understanding the difficulties of effective use of technology, GGB in our case, 

is the perspective of instrumentation. The instrumental approach to tool use 

has been applied to the study of Computer Algebra Software into learning of 

mathematics and also to Dynamic Geometry Software. The instrumental 

approach distinguishes between and artifact and an instrument. Rabardel and 

Vérillon (1995) claim the importance of stressing the difference between the 

artefact and the instrument. A machine or a technical system does not 

immediately constitute a tool for the subject; it becomes an instrument when 

the subject has been able to appropriate it for her/himself. This process of 

transformation of a tool into a meaningful instrument is called instrumental 

genesis. During the instrumental genesis, mental schemes are built up by the 

student. In these mental schemes, technical and conceptual components are 

interwoven (Rabardel, 2001). This process is complex and depends on the 

characteristics of the artifact, its constraints and affordances, and also on the 

knowledge of the user. The process of instrumental genesis has two 

dimensions, the instrumentation and the instrumentalization: 

- Instrumentation is a process through which “the affordances and the 

constraints of the tool influence the students’ problem solving strategies 

and the corresponding emergent conceptions” (Kieran & Drijvers, 2006, 

p. 207). “This process goes on through the emergence and evolution of 

schemes while performing tasks” (Trouche, 2005, op. cit., p. 148). 
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- Instrumentalization is a process through which “the student’s knowledge 

guides the way the tool is used and in a sense shapes the tool” (Kieran & 

Drijvers, op. cit., p. 207). “This process can lead to enrichment of an 

artifact, or to its impoverishment” (Trouche, 2005, op. cit., p. 148).  

In our research, we need to select different problems for being solved first 

with P&P and then with the help of GGB. In order to analyze the connectivity 

and synergy between the students’ resolution strategies in both environments, 

the problems are to be somehow similar. The basic space of a problem is 

formed by the different paths for solving the problem. We transfer the 

similarity of the problems to the similarity of their basic spaces. For example, 

the problems considered in this article, share common strategies for reaching 

the solution such as equivalence of areas due to complementary dissection 

rules, application of formulas (area of a triangle), particularization, etc. 

We plan to design an instructional sequence, focusing on a systematization of 
the interactions produced between artifacts (P&P, GGB), the mathematical 
actions and the didactical interactions. The theoretical framework is based on 
both instrumental approach and activity theory (Kieran &Drijvers, 2006). We 
connect the activity theory as part of the “orchestration” (Trouche, 2005). The 
actions consist in different problem sequences to be proposed by the teacher to 
the students, to be solved in both media. The teacher proposes different 
indications or new problems. For each problem, we prepare a document with 
pedagogical messages understood as Cobo, Fortuny, Puertas and Richard 
(2007), that provide differing levels of information, and we group them 
according to the phases of the solving processes which are being carried out- 
familiarization, planning, execution, etc. We classify the pedagogical 
messages, for each phase,  in three levels. Level 0 contains suggestions that do 
not imply mathematical contents or procedures in the solving process. The 
messages of level 1 only convey the name of the implied mathematical 
contents or procedures. Level 2 provides more specific information on these 
contents or procedures. For the problems to be solved in a technological 
environment we also prepare contextual messages. These messages are related 
to the use of GGB. The teacher can help the students in case they have 
technical difficulties with GGB. 

We also specify some terms that will be used in this study of students’GGB 

resolutions such as figure and drawing. We use these terms with their usual 

meaning in the context of the Dynamic Geometry Software (Laborde & 

Capponi 1994). Hollebrands (2007) uses this distinction between figure and 
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drawing in order to describe the way in which students interpret the 

representations generated on the computer.  

CONTEXT AND METHOD  

The study is conducted with a group of fourteen 16-year-old students from a 

regular class in a public high school in Spain. These students are used to 

working on Euclidean geometry in problem solving contexts. They have been 

previously taught GGB. The main source of data for this paper comes from the 

experimentation with two problems:  

1. Rectangle problem: Let E be any point on the diagonal of a rectangle 

ABCD such as AB =8 units and AC=6 units. What relation is there between 

the areas of the shaded rectangles in the figure below? 

        

2. Triangle problem: Let P be any point on the median [AM] of a triangle 

ABC. What relation is there between the areas of the triangles APB and APC? 

These problems have to do with comparing areas and distances in situations of 

plane geometry. They admit different solving strategies; they can be solved by 

mixing graphical and deductive issues, they are easily adaptable to the specific 

needs of each student, and they can be considered suitable for the use of GGB. 

For all the problems, we start by exploring the basic space of the problems in 

the P&P and DGS environments. After having identified the different 

resolution strategies and conceptual contents of the problems, the focus is on 

analyzing the necessary knowledge to solve them. Finally, we prepare a 

document with the pedagogical and technical messages that provide differing 

levels of information.  

All the activities with students are planned to take four sessions of one hour 

each with an average of two problems per session. The two problems above 

were developed in the first two lessons in which the students worked on their 

own. The inquiry-based approach to the lessons leads the students to assume 

the responsibility for the development of the task. The teacher fosters the 

students’ autonomy by only intervening in certain moments and giving some 

messages, established a priori, concerning the resolution.  
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For the experimentation with each problem, the whole set of data is: a) the 

solving strategies in the written protocols (P&P and GGB); b) the audio and 

video-taped interactions within the classroom (student-teacher, student-

content and student-GGB); and c) the GGB files. All these data were 

examined in order to inform about our research goals. The integration of data 

concerning these goals led us to the description of the students’ processes of 

instrumentation and instrumentalization processes. For the description, 

different variables were considered, among them: the students’ heuristic 

strategies (related to geometric properties, to the use of algebraic and measure 

tools or to the use of both…); the use of GGB (visualization, geometrical 

concepts, overcoming difficulties…); the obstacles encountered in each 

environment (conceptual, algebraic, visualization, technical obstacles…); etc.  

For each case, we first analyze the P&P resolution with data coming from the 

tapes and the protocols. We consider the student’s solving strategies and the 

use of mathematical contents. Then we analyze the GGB resolutions with data 

coming from the tapes and especially from those tapes that show the screen. 

We consider again the student’s solving strategies, the use of mathematical 

contents and now we also pay attention to instrumented techniques and 

technical difficulties. After having developed these two types of analysis, we 

compare GGB and P&P resolutions by looking at the use of the two 

environments within each problem, when it is possible. To analyze the 

problem solving process, we also consider the phases of the problem solving 

process (Schoenfeld, 1985) as a whole in each group of problems (GGB and 

P&P).  

THE CASE OF SANTI: An episode of exploration/analysis 

The mathematical content of the problem was dealt with in courses prior to the 

one Santi is currently taking. Santi has procedural knowledge relating to the 

application of formulas for calculating the area of the figure, and sufficient 

knowledge of the concepts associated with geometric constructions. He is a 

high-achieving student. Santi is asked to solve the first problem with P&P and 

the second problem with the help of GGB. In this section we summarize his 

problem solving process for both problems. 

- Resolution of the rectangle problem (P&P): 

In the resolution of the first problem, after reading the explanation of the 

problem, Santi observes the figure and then he states that he does not know 

enough numerical data. The teacher suggests the student to consider a 

particular case (heuristic cognitive message of level 1 in the 

planification/execution phase). Santi reacts to this message, considering the 
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particular case in which E is the midpoint of the diagonal and he conjectures 

that both areas should be equal. Then he tries to prove the conjecture for the 

particular case in which the length AE is 2 units. The student reaches a 

solution to the particular case by using trigonometry. He obtains the angles in 

the triangle EAN (Figure 1) and he calculates the measures of the sides AN 

and AM. Finally he obtains the numerical value of both areas and he observes 

that he gets different values. Santi requests a message about the solution 

because he expected to obtain equal values. The teacher observes that there is 

an algebraic mistake in his resolution and suggest Santi to review the process 

he has followed because there are algebraic mistakes (metacognitive message 

of level 1 in the verification phase). The student finds the mistake and obtains 

the equal values of both areas (Figure 1). He then tries to use the same strategy 

for the general case using the relation: 
AM

AN
MAE ==

6

8
)tan(p . 

 
 

Figure 1: Resolution  with paper and pencil of the first problem (Santi) 

Santi bases his resolution strategies on applying trigonometry and he does not 
tries to use the strategy based in comparing areas of congruent triangles 
(strategy based on equivalence of areas due to complementary dissection 
rules). The teacher proposes other problems to be solved with P&P and with 
GGB. In the following paragraph we consider one of these problems. 

- Resolution of the triangle problem (GGB): 

After reading the explanation of the problem, Santi draws a graphic 
representation without coordinate axes before constructing the figure with 
GGB. The teacher observes that Santi has considered the point P in the side 
AC of the triangle instead of the median. The teacher says to Santi “Try to 
understand the conditions of the problem” (metacognitive message of level 0 
in the familiarization phase). Santi constructs a new figure with GGB (Figure 
2) and he observes the figure trying to find a solving path. Then he proposes a 
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conjecture and ask the teacher for verification: “ the triangles APC and APB 

have a common side and the same area (he verifies this with the tool area of a 

polygon). How could I prove that these two triangles are equal”? I have tried 

to prove that they have the same angles but I don’t see it...” 

We observe that Santi does not validate his conjecture with the help of GGB. 
The teacher gives him a validation message of level 1“ Are you sure that these 

triangles are equal?. Santi reacts to this message changing the triangle ABC. 
He moves the vertex A (Figure 3) and he observes without measure tools that 
the triangles are different.    

  

Figure 2: Construction with GGB of the 
triangle ABC and its median. Santi uses 
the tool polygon to construct the 
triangles. 

Figure 3: He moves the vertex A to 
obtain a general triangle. We observe 
that he tries to define vertices with 
coordinates that are integer numbers. 

 The last graphic deduction marks the beginning of the search for a new 
strategy. He observes the figure, without dragging its elements. More than five 
minutes have gone without doing anything in the screen. Santi requests again 
the help of the teacher (Table 1, line 1) for the familiarization phase of the 
problem. 

  Interactions 

1 Santi P has to be any point in [AM]? Isn’t it the midpoint? [Santi tries 
to consider particular cases] 

2 Teacher P is any point in the median [AM]. The triangle ABC is also a 
general triangle (cognitive message of level 1 for the 
familiarization phase) 

.... Santi [Santi  reacts to this message modifying the initial triangle. He 
moves again the vertices to obtain the triangle in Figure 3]. 

3 Santi I think that I see it!...The triangles have a common side and the 
same height [the segments [BM] and [MC] (wrong deduction)]  
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4 Teacher Are you sure about that? 

5 Santi [Santi reacts to this message observing the triangle without doing 
any action on the screen. Then he states: ] 

No.These lines are not perpendicular! [(AM) and (BC)]. But, this 
was a good trial... 

Have they the same base? [he refers to the common side of both 
triangles ] 

6 Teacher Yes 

Table 1: How Santi tries a new solving path 

For the first time, Santi tries to drag the vertices of the triangle trying to find 
invariants. While he drags the vertexes he looks in the algebraic window for 
invariants. We observe here the simultaneous use of the algebraic window and 
the geometric window. He observes again that the triangles have the same area 
in all the cases and a common side. He tries to prove that the heights are equal 
but he wrongly considers that the side [BM] is the height of the triangle BAP 
(Figure 3). The teacher gives him a message of level 0 for the validation phase 
(Table 1, lines 3 to 6). Santi reacts to this message constructing with GGB the 
perpendicular line from the vertex B to the base of the triangle (Figure 4). He 
tries to follow with the same strategy (proving that the heights have the same 
length) and he drags the vertexes A, B and C observing the constructed lines 
(Figure 4). 

 
 

Figure 4: Construction of the height of the triangle 
BPA and perpendicular line through C to the 
median. 

Figure 5: the heights have the same length 
(congruent triangles BFM and MCD) 
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In this time, he observes again the figure (Figure 4) without dragging. He is 
lost. This is the beginning of a new phase. We wonder if Santi had found a 
proof for his conjecture if he had constructed the heights of both triangles. 
Nevertheless, he does not construct the points F and D (Figure 5) and he 
abandons the solving strategy. Santi requests again the help of the teacher for 
the planification/execution phase.  

- Santi: Is it possible to solve the problem with trigonometry?  

The teacher gives him a new message: “Could you think of some way of 

breaking the triangle ABC into triangles and look for invariants with the help 

of GGB” (cognitive message of level 2 for the planification phase). Santi does 
not react to this message and try to find a resolution strategy using 
trigonometry. Santi does not find any trigonometric strategy and tries again 
with GGB. This time, he reacts to the previous message of the teacher. He 
erases the perpendicular lines and drag the vertices of the triangle ABC. He 
observes in the algebraic window the changing values looking for invariants. 
He observes then that the interior triangles BPM and CPM (Figure 3) have 
always the same area (Table 2). This observation will suggest him a new 
solving path based on comparing areas. He makes a new conjecture and 
request the help of the teacher for validating his deductions (Table 2). 

  Interactions 

1 Santi Are the triangles BPM and PMC equal? (Figure 2) 

2 Teacher What do you mean by equal? 

3 Santi They have the same area 

4 Teacher Yes. You should justify this fact. 

5 Santi If I subtract two equal areas from two equal areas, do I get the 
same area? 

6 Teacher Yes 

6 Santi Ok! I justify this with paper and pencil. 

Table 2: Strategy based on comparing areas 

Finally Santi justifies his deductions with P&P. He proves that the median of a 
triangle divides the triangle into two triangles of same area. We wonder if the 
use of GGB helps Santi to find a strategy based on comparing areas.  
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FINAL REMARKS  

We observe in this study that Santi appropriates the software in few sessions 
of class and he always makes constructions based on geometric properties of 
the figures. He also combines the simultaneous use of the algebraic window 
and the geometric window and he tends to reason on the figure. We consider 
that the affordances of the software have influenced Santi’s resolution 
strategies (instrumentation process). In the ongoing research (longer teaching 
experiment) we have also observed some common heuristic strategies in both 
environments such as the strategy of supposing the problem solved and the 
strategy of particularization. We also observe that Santi tends to use more 
algebraic strategies when he works only with P&P than when he works in a 
technological environment. Moreover he tends to produce more generic 
resolutions, independent of numerical values, fostered by a proposal of 
problems that accept these kinds of solving strategies. Nevertheless, given that 
students have different relationships with the use of GGB and the detailed 
study of Santi gives us some insight of a future classification of typologies in 
the instrumental genesis. In our broader research we try to follow the 
instrumental genesis for a group of fourteen students to observe different 
students’ profiles. Future research should help to better understand the process 
of appropriation of the software and to analyze the co-emergence, connectivity 
and synergy of computational and P&P techniques in order to promote 
argumentation abilities in secondary school geometry.  
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In this paper we analyze and discuss the use of ICT, particularly the Internet, 

in the context of a mathematical problem-solving competition named 
“Sub14”, promoted by the University of Algarve, Portugal. Our purpose is to 

understand the participants’ views regarding the mathematical activity and 

the role of the technology they’ve used along the competition. Main results 
revealed that the participants see the usage of Internet quite naturally and 

trivially. Regarding the mathematical and technological competences elicited 

by this competition, evidences were found that develops mathematical 
reasoning and communication, as well as it increases technological fluency 

based on the exploration of everyday ICT tools. 

A GLIMPSE OVER THE MATHEMATICAL COMPETITION 
“SUB14”  

Sub14 (www.fct.ualg.pt/matematica/5estrelas/sub14) is a mathematical 
problem-solving web based competition addressed to students attending 7th 
and 8th grades.  

It comprises two stages. The Qualifying consists of twelve problems, one 
every two weeks, and takes place through the Internet. The Sub14 website is 
used to publish every new problem; it provides updated information and 
allows students to send their answers using a simplified text editor in which 
they can attach a file containing any work to present their solution. The 
participants may solve the problems working alone or in small teams and 
using their preferred methods and ways of reasoning. They have to send their 
solution and complete explanation through the website mailing device or using 
their personal e-mail account. Every answer is assessed by the organizing 
committee, who always replies to each participant with some constructive 
feedback about the given answer. 

The word problems are selected according to criteria of diversity and involve 
several aspects of mathematical thinking not necessarily tied to school 
mathematics. Their aim is to foster mathematical reasoning, either on 
geometrical notions, numbers and patterns, and logical processes, among 
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others. There is a concern on presenting problems that allow different 
strategies and also some that have multiple solutions. 
 

In Iona’s class the students had to elect a delegate and a co-delegate. Each student wrote 
two names in a voting sheet by order: the first for the delegate and the second for the co-
delegate. There are 13 students in the class. How many ways have a student to vote if his 
or her own name is allowed? 

Fig. 1: A problem aiming to elicit the abilities of organizing and counting 

The Final consists of a one-day tournament where the finalists solve five 
problems, individually, with paper and pencil, and explain their reasoning and 
methods. This Final also provides some recreational activities addressed both 
to contestants and accompanying persons, namely parents and teachers.  
 

Joanna, Josephine and Julia are all very fond of sweets. As the summer aproaches they 
decide to go on a diet. Their father has a large scales and they used it to weigh themsleves 
in pairs. 
Joanna and Josephine together wheighed 132 kg 
Josephine and Julia together wheighed 151 kg 
Julia and Joanna together weighed 137 kg. 
What is the weight of each one? 

Fig. 2: A problem from the Final on identifying and relating variables and 
numbers 

Demanding a clear description of the reasoning, methods and procedures was 
a strong concern of the committee. Moreover, the feedback sent to each 
participant had an essentially formative role (Diego & Dias, 1996), aimed at 
stimulating self-correction and valuing students’ own ideas. Every two weeks 
the Sub14 committee publishes a proposal of the solution of the previous 
problem, stressing the diversity of strategies that students could have applied. 
Hence, the committee selects noteworthy excerpts from student’s solutions, 
whether due to the originality of their reasoning, their creativity or the 
interesting usage of technological tools. 

A THEORETICAL FRAMEWORK  

In this paper we are addressing a part of a larger study and consequently we 
refer to a few theoretical aspects of the overall framework. There are four 
main focuses in the theoretical approach: (a) looking at mathematics as a 
human activity, (b) taking problem solving as an environment to develop 
mathematical thinking and reasoning, (c) exploring the concept of being 
mathematically and technologically competent and finally (d) considering the 
role of home ICT in out of school mathematics learning.     
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Fig. 3: Main conceptual elements of the theoretical framework 

Mathematics as a human activity  

Doing mathematics may be recognized as a human activity based upon a 
person’s empirical knowledge, in search of a formalized understanding of the 
everyday problematic situations. From this point of view, Freudenthal (1973, 
1983) states that human activity, which comprises empirical knowledge, 
guides oneself from the simple observation and interpretation of phenomena – 
horizontal mathematizing –   to its abstract structuring and formalization – 
vertical mathematizing.  

One of the criteria observed in launching a problem in Sub14 refers to the 
expectation that participating students will be able to activate their empirical 
knowledge and their experience to tackle mathematical problems. This 
perspective on mathematical activity is shared by many authors who 
emphasize the importance of exploring mathematical situations starting from 
common sense knowledge (Hersh, 1993, 1997; Ernest, 1993; Ness, 1993; 
Matos, 2005). As Schoenfeld (1994) claims, easiness in the use of 
mathematical tools, like abstraction, representation or symbolization, does not 
guarantee that a person is able to think mathematically. Rather mathematical 
thinking requires the development of a mathematical point of view and the 
competence to use tools for understanding.   

This is the perspective that is present in Sub14 and which expresses the 
prevailing concept of mathematical activity arising from the perspective of 
Realistic Mathematics Education: bringing student’s reality to the learning 
situation so that he/she is the one who does the mathematics, drawing on 
his/her knowledge and resources.  

Mathematical knowledge and problem solving  

Several authors from the field of mathematics education have proposed 
problem solving as a privileged activity “for students to strengthen, enlarge 
and deepen their mathematical knowledge” (Ponte et. al, 2007, p. 6).  

This view on mathematical problem solving entails a conception of 
mathematical knowledge that is not reducible to proficiency on facts, rules, 
techniques, and computational skills, theorems or structures. It moves towards 

Home ICT 

Mathematics as a 
human activity 

Problem solving 

Mathematical and 
technological 
competences 
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broader constructs that entails the notion of mathematical competence 
(Perrenoud, 1999; Abrantes, 2001) and problem solving as a source of 
mathematical knowledge. In solving a problem there are several cognitive 
processes that have to be triggered, either separately or jointly, in pursuing a 
particular goal: to understand, to analyze, to represent, to solve, to reflect and 
to communicate (PISA, 2003). 

According to Schoenfeld (1992), the concept of mathematical problem can 
move between two edges: (i) something that needs to be done or requires an 
action and (ii) a question that causes perplexity or presents a challenge. The 
educational value of a problem increases towards the second pole where the 
solver has the possibility of coming across significant mathematical 
experiences. One of the purposes of mathematical problems should be to 
introduce and foster mathematical thinking or adopting a mathematical point 
of view, which impels the solver to mathematize: to model, to symbolize, to 
abstract, to represent and to use mathematical language and tools (Schoenfeld, 
1992, 1994). 

The formative aims of the problems proposed in Sub14 are essentially in line 
with the perspective of giving students the experience of mathematical 
thinking and also the opportunity to bring forth mathematical models and 
particular kinds of reasoning. 

Communication, home technologies and learning 

Considering that mathematics is a language that allows communicating your 
own ideas in an accurate and understandable way (Hoyles, 1985), Sub14 
intends to develop that relevant communicational aspect, as stated in the 
current National Curriculum: “students must be able to communicate their 
own ideas and interpret someone else’s, to organize and clearly present their 
mathematical thinking” and “should be able to describe their mathematical 
understanding as well as the procedures they use” (Ponte et. al, 2007, p. 5). 
Conversely, the importance of developing the competence of mathematical 
communication draws on a strong connection between language and the 
processes that structures human thought, as it is referred by Hoyles (1985). 
Accordingly, language takes up two different roles in mathematical education: 
communicative, where students show the capacity to describe a situation or 
reasoning act; and cognitive, which may help to organize and structure 
thoughts and concepts. Hence, there is a multiplicity of capacities and 
competences, both mathematical and technological, which are triggered 
through the combination of facts and resources in order to solve each problem 
of the competition. 

Technologies and particularly the Internet, which gave life to Sub14, had a 
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somewhat “neutral” or “trivial” role since the main focus of students’ 
concerns was on the actual mathematical activity involved. Noss and Hoyles 
(1999) used the “window image” to emphasize this phenomenon: a window 
allows us to look beyond, and not only at the object itself. Although every new 
technology tends to draw attention to the tool itself, we soon need to “forget” 
the tool and concentrate on the potentialities it has to offer, namely on the 
learning and cognition field.  

Using Lévy’s (1990) ideas, Borba and Villarreal (2005) claim that technology 
mediates the processes that are responsible for the rearrangement of human 
thinking. In fact, knowledge is not only produced by humans alone, but it’s an 
outcome of a symbiotic relationship between humans and technologies – 
which the authors entitled humans-with-media: “human beings are 
impregnated with technologies which transform their thinking processes and, 
simultaneously, these human beings are constantly changing technologies” (p. 
22).  

Indeed, human thought used to be defined as logical, linear and descriptive. 
Nowadays it is hastily changing into a hypertextual thinking, comprising many 
forms of expression that go beyond verbal or written forms, such as image, 
video or instant messaging. These social changes allow youngsters to develop 
a large number of competences, which grants them the skills and 
sophistication required to learn outside the school barriers. 

Towards the conclusions of the ImpaCT2 project, that took place in Great 
Britain, Harrison (2006) asserted that the model used to measure the influence 
of new technologies on youngster’s school achievement was too simplistic and 
induced to settle on the absence of such influence. This author then proposed a 
new model that emphasized the importance of social contexts in which 
learning takes place. Harrison (2006) was thus able to conclude that learning 
at home must not be neglected, but be faced as a partner of the school 
curriculum.  

Although knowledge gathered outside the school is frequently seen as 
worthless, it is clear that children are capable of watching a YouTube’s video, 
talk to their friends through MSN, and also solve the Sub14 problems and 
express their thinking using an ordinary technological tool. These “digital 
natives” (Prensky, 2001, 2006) access information very fast, are able to 
process several tasks simultaneously, prefer working when connected to the 
Web and their achievement increases by frequent and immediate rewards. 
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METHODOLOGY 

The purpose of this study was to identify and understand the participants’ 
perceptions regarding the (i) mathematical activity, (ii) the competences 
involved and (iii) the role of the technological tools they’ve used along the 
competition.  

A case study methodology reveals itself appropriated in cases where relevant 
behaviours can’t be manipulated, but it is possible and appropriate to proceed 
to focused interviews, attempting to understand the surrounding reality (Yin, 
1989). Since we intended to get diversity and interpret results, eleven 
participants were chosen intentionally, from the 120 finalists, hoping they 
would provide interesting data according to the research questions. 

The field work began collecting data that would allow a complete 
understanding of the competition, in order to adjust the approach to the 
participants. Later on, we used other data collecting techniques: a 
questionnaire to the finalists, video records from the Final, documental data 
from participants (such as their solutions to the Sub14 problems, or their 
interactions with the Sub14 committee, using e-mail). That data allowed the 
planning of interviews to the eleven participants, as well as to their parents, 
aiming at collecting descriptive data, in their own language, hoping for an 
understanding on how they viewed certain aspects of Sub14 and of their 
involvement. 

For the data analysis we used an interpretative perspective (Patton, 1990) and 
an inductive process (Merriam, 1988), based on content analysis. Thus, the 
objective was to understand the significance of the events from the 
interviewees’ perspective, within the scope of the theoretical assumptions 
defined prior to the interviews.  

THE INTERNET – THE SUB14 LIFE SUPPORT 

The first evidence produced about students’ perceptions on the problem 
solving environment was the fact that the Internet and the technologies used 
within Sub14 assumed, from the point of view of students, a neutral role in the 
development of their mathematical activity. However several aspects of their 
products and statements showed evidence of the importance and usefulness of 
different tools, behind their apparent indifference to technology if put in 
abstract terms. Therefore, we may state that the Internet undoubtedly is the 
technology that brings Sub14 to life; all the learning processes and the 
competences involved derive from the interaction provided and nourished by 
this tool. 
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Trivializing Technology 

Resorting to the Internet and other technologies was seen as absolutely natural 
by some participants. 

 “As I see it, reasoning comes from the mind; therefore I think no technology will 
help us to really solve a problem.” [Bernardo] 

Trivializing the role of the Internet and the technology involved in the 
competition can be found in the model proposed by Harrison (2006), which 
highlights the importance of the social context surrounding the learning 
process. These participants show all the characteristics of a digital native 
(Prensky, 2001), i.e., they start using computers at an early age, with a great 
variety of purposes, which can be related or not to school learning. 
Furthermore, these participants can also be considered as “humans-with-
media”, or particularly, “humans-with-Internet”, according to the definitions 
proposed by Borba and Villarreal (2005), since their personality is being built, 
simultaneously, through the daily interaction with the Internet and other 
technologies. 

The Role of Communication and Feedback  

Essentially, the participants like the feedback sometimes provided 
immediately by the Sub14 committee, resulting from the analysis of their 
answers to each problem. The possibility of correcting little mistakes or even 
change the resolution completely, using the hints from the feedback, increase 
their self-esteem and motivation to remain in the competition. For the 
interviewed students, this is the characteristic that distinguish Sub14 from 
other similar competitions. 

“This year I also participated in another competition. We send an answer to a 
problem, but they don’t reply to us, and the Sub14 committee keeps sending 
hints”. [Isabel] 

As students pointed out there is someone who receives their answer to the 
problem, their questions or even their complaints. 

“It’s not something that we send and no one will care about, they are always 
there.” [Lucia] 

As mentioned above, the feedback is almost immediate and this is only 
possible due to the communicability that the Internet enables. The constant 
request for auto-correction forces the participants to reflect on their own 
reasoning and the mistakes given, stimulating them to submit a correct answer 
as quickly as possible. Some of them sent messages to Sub14 several times a 
day, until they get the confirmation that their answer was correct. 
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Another positive aspect of this bilateral communication is the request of a 
complete, coherent and clearly written explanation of the participant’s 
reasoning. This way, the feedback provided by the organizing team respects 
and nourishes the reasoning of each participant, as well as the processes used. 
We have even noticed a development on the correctness of the answers that 
the participants submitted throughout the competition. 

“In the beginning it was somehow strange. I wasn’t used to it. I’d put the 
calculations and that was it. But we had to present all our thinking. It was as if I 
had to write what I was thinking. Thus, I would think out loud and split it into 
parts. But from the 3rd or 4th problem I was already used to it.” [Isabel] 

This feedback originated a change of attitudes in some participants within 
their mathematics classroom when facing assessment situations. The students 
themselves observed they took more care while answering to questions posed 
by the teachers, presenting all the necessary justifications and showing a 
greater predisposition to interpret a problematic situation, find a reasoning 
path or procedure in order to explain the solution in a convincing way. 

 “[…] I now pay more attention to little details that sometimes others don’t, and it 
reflects on the tests and on the problems that the teacher gives us, some of them 
really tricky… but now I am tuned!” [Lucia] 

“Home Technologies” 

The dynamic nature of the bidirectional communication can be felt in other 
aspects revealed by the participants. First off all, we note the usage of the 
Sub14 website: the participants use it frequently and think that the available 
information is important and useful, they like the design, the way it is 
organized and the fact that it is permanently updated: 

“I like having an organized website (…) the ‘Press Conference’ page was always 
updated.” [Ana] 

The purpose of posting submitted solutions was to show the methods used by 
some of the participants, hoping to improve their performance by the positive 
reinforcement of seeing their works and their names posted online. 

 “Yes! Sometimes I would go there to see if any of the posted solutions was mine! 
Once or twice I found my answer and I was very happy and shouted… ‘Daddy, 
daddy, come here!’” [Bernardo] 

Bernardo’s enthusiasm, as well as many other participants’, supports the 
pedagogical and motivational aspects of the methodology adopted in Sub14. 
Not only it promotes the diversification of reasoning strategies and points out 
the several problem solving phases, but it also increases self-esteem and 
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improves innovation and creativity as “special” answers are selected to be 
published online. 

Moreover, the fact that Sub14 is a digital competition allowed the participants 
the opportunity of communicating their reasoning in an inventive way, since 
they could resort to any type of attachments, particular the ones they felt more 
comfortable with or the ones they found adequate to the problem itself. 
Therefore, the participants used mainly the text editor, MSWord, but they also 
used drawing and spreadsheet programs, like MSPaint and MSExcel, all 
examples of home technology. 

MSWord was used to compose text, organize information in tables, and insert 
images, automatic shapes, WordArt objects or Equation expressions. It was 
elected the favorite between the participants, since it is the one they better 
understand and constantly are asked to use for several school assignments. 

“[Word] is the simplest to use, it’s the one that I have more confidence on to do 
school tasks, and I’m used to it. It’s the one I’m good at.” [Lucia] 

Using images was a strategy that seven of the interviewee used. Nevertheless, 
some of them only inserted images that had something to do with the problem 
context, more like an illustration. In this case, we may consider that resorting 
to images had mainly an aesthetic function, as it didn’t help presenting or 
clarifying the reasoning and strategy used to solve the problem. However, 
other interviewees sketched their own images using MSPaint in order to 
improve the intelligibility of their thoughts: 

“Anything that I thought that could help to improve the reasoning, I would draw 
it [in paper] and then I’d put it in the computer.” [Bernardo] 

“We were playing with some straws and we reached the solution by trial and 
error. Then [we took some pictures] with the digital camera [and] put them in the 
computer so that we could send them.” [Alexandra] 

In this way the image usage assumed, essentially, two roles in the answers of 
these participants. Firstly, it was merely a visual detail, which may be 
influenced by the type of work done in students’ school assignments. 
Secondly, the creation of images within the context of their interpretation of 
the problems is an evidence of their efforts on expressing their reasoning in 
the best possible way. Moreover, we can notice their awareness of the 
different representations that could materialize their reasoning and even some 
decision ability when facing the options they had at hand. 

Two interviewees used Excel to present their answers. One of them used this 
tool to solve every Sub14 problem, showing however a narrow usage of the 
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program as a means to organize the information and his answer. Seldom using 
the function “SUM”, he essentially resorted to tables and images, considering 
that the spreadsheet was better than a text editor. The referred simplicity 
seems to come from the fact that he has been exposed to this tool from an 
early age:  

“Sometimes, when I was a kid – I got my first computer when I was six – I liked 
to get there [MS Excel] and do squares with the cells, paint them and that sort of 
things…” [Bernardo] 

Another participant used the spreadsheet to solve five of the twelve problems, 
showing that he knew some of the advantages of this tool. Therefore, these 
participants were confident enough in using MSExcel, nonetheless not as a 
result of work within the school context, but rather of their domestic 
“findings”. 

ANOTHER LOOK AT SUB14 AS A LEARNING ENVIRONMENT 

Solving the Sub14 mathematical problems requires looking at a problem 
situation from a mathematical perspective. This can be seen as a 
mathematizing process, since the participant is stimulated to express the way 
in which thinking was organized and progressed. In this competition, the 
participants found a place where they could freely communicate their ideas, 
had someone who listened and advised them, helping to make their 
mathematical thinking and expression become clearer. Moreover, when 
solving a problem, they faced the transition from convincing themselves to 
convincing the others (Mason, 2001). This led participants to develop their 
own understanding of the problem, promoting the usage of domestic 
technologies to communicate, thus adding competences that sometimes school 
neglects or forgets. 

As a learning environment, although being external to the school context, 
Sub14 is aligned with school mathematics, and promotes a set of competences 
that fit within current mathematical education purposes and curricular targets. 
The fact that the competition occurs in a loose institutional context allows a 
greater family commitment and complicity with the participant’s learning 
process, fostering the discussion on mathematical questions and problems 
outside the school environment, especially at home, maybe around dinner 
table. 

Further work on this field shall include a future experience to investigate the 
possibility of allowing participants to communicate amongst them, within the 
website, bearing in mind the idea of a connected learning environment.  



 

CERME 6 259 WG7 

 

REFERENCES 

Abrantes, P. (2001). Mathematical competence for all: Options, implications and 
obstacles. Educational Studies in Mathematics, 47, p. 125-143. 

Borba, M. & Villarreal, M. (2005). Humans-with-Media and Reorganization of 

Mathematical Thinking: Information and Communication Technologies, 

Modeling, Experimentation and Visualization. New York, USA: Springer. 

Diego, S. & Dias, P. (1996). Feedback educativo: contributo para o reconhecimento 
da sua importância em software educativo. Actas do Simpósio Investigação e 

Desenvolvimento de Software Educativo. Costa da Caparica. 

Ernest, P. (1993). Mathematical activity and rhetoric: a social constructivist account. 
In I. Hirabayashi et al., (Eds). Proceedings of the 17th Annual Conference of the 

International Group for the Psychology of Mathematics Education, (pp. 238-
245). Tsukuba, Japan. University of Tsukuba. 

Freudenthal, H. (1973). Mathematics as an Educational Task. Dordrecht: Reidel. 

Freudenthal, H. (1983). Didactical Phenomenology of Mathematical Structures. 
Dordrecht: Reidel. 

Harrison, C. (2006). Postmodern Research and E-Learning: Anatomy and 
representation. European Educational Research Journal, 5(2), p. 80-93. 

Hersh, R. (1993). Humanistic Mathematics and the Real World. In A. White (Ed.). 
Essays in Humanistic Mathematics, (pp. 15-18). Washington D.C.: MAA. 

Hersh, R. (1997). What is Mathematics Really?. New York: Oxford University 
Press. 

Hoyles, C. (1985). What is the point of group discussion? Educational Studies in 

Mathematics, 16 (2), p. 205-214. 

Lévy, P. (1990). As Tecnologias da Inteligência. O Futuro do Pensamento na Era 

da Informática. Lisboa: Instituto Piaget.  

Mason, J. (2001). Convincing Myself & Others: Discussing with mummy and 
justifying to daddy. Mathematics Teaching, 177, p. 31-36. 

Matos, J. F. (2005). Matemática, educação e desenvolvimento social – questionando 
mitos que sustentam opções actuais em desenvolvimento curricular em 
Matemática. In Educação e Matemática: caminhos e encruzilhadas. Actas do 
encontro internacional em homenagem a Paulo Abrantes. (pp. 69-81). Lisboa: 
APM. 

Merriam, S.  (1988). Case Study Research in Education – a qualitative approach. 
San Francisco: Jossey-Bass Publishers. 

Ness, H. M. (1993). Mathematics, an Integral Part of Our Culture. In A. White (Ed.). 
Essays in Humanistic Mathematics, (pp. 49-52). Washington D.C.: MAA. 

Noss, R. & Hoyles, C. (1999). Windows on Mathematical Meanings. Learning 



 

CERME 6 260 WG7 

 

Cultures and Computers. Dordrecht, The Netherlands: Kluwer Academic 
Publishers. 

Patton, M. (1990). How to use qualitative methods in evaluation. Newbury Park: 
Sage. 

Perrenoud, P. (1999). Construir as competências desde a Escola. Porto Alegre: 
Artes Médicas Sul. 

PISA (2003). Conceitos Fundamentais em Jogo na Avaliação da Resolução de 

Problemas. Ministério da Educação, GAVE. Lisboa. 

Ponte, J. et al. (2007). Programa de Matemática do Ensino Básico. M.E., Lisboa. 

Prensky, M. (2001). Digital Natives, Digital Immigrants. On the Horizon. 9(5), 
October, (n/p.). NCB University Press. 

Prensky, M. (2006). Don’t bother me, Mom, I’m learning! How computer and video 

games are preparing your kids for 21
st
 century success and how you can help!. St. 

Paul, MN: Paragon House. 

Schoenfeld, A. (1992). Learning to Think Mathematically: Problem Solving, 
Metacognition, and Sense Making in Mathematics. In D. Grouws (Ed.), 
Handbook of Research on Mathematics Teaching and Learning, (pp. 334-370). 
Reston: NTCM. 

Schoenfeld, A. (1994). Reflections on doing and teaching mathematics. In A. 
Schoenfeld (Ed). Mathematical Thinking and Problem Solving. (pp. 53-70). 
Hillsdale, NJ: Lawrence Erlbaum Associates.



 

CERME 6 261 WG7 

 

USING TECHNOLOGY IN THE TEACHING AND LEARNING OF 
BOX PLOTS 

Ulrich Kortenkamp      Katrin Rolka 

University of Education Schwäbisch Gmünd    University of Cologne 

 

Box plots (or box-and-whisker-plots) can be used as a powerful tool for visualising sets 

of data values. Nevertheless, the information conveyed in the representation of a box 

plot are restricted to certain aspects. In this paper, we discuss both the potential and 

limitations of box plots. We also present a design for an empirical study in which the use 

of a variety of tasks explicitly addresses this duality. The activities used in the study are 

based on an interactive box plot applet that surpasses the currently available tools and 

offers new ways of experiencing box plots. 

MOTIVATION 

Recently, the mathematics curricula of many parts of the world were revised in order to 
include more statistics and data analysis. In the literature, one can find an extensive 
discussion about this idea under the notion of “statistical literacy” (Wallman, 1993; 
Watson & Callingham, 2003). This reflects the growing importance of the ability to 
understand and interpret data that has been collected or is being presented by others. The 
NCTM (2000) standards, for example, state, “To reason statistically--which is essential 
to be an informed citizen, employee, and consumer--students need to learn about data 
analysis and related aspects of probability.” The global availability of data through the 
Internet makes it easy to access and process huge data sets. For these, it is important that 
students have the skills and tools to summarise and compare the data, also by using the 
computer. 

In this paper, we focus on box plots as a means to visualize statistical data. Box plots are 
used not only in textbooks, but are also available in graphing calculators. In order to use 
statistical information properly, the students have to develop a clear concept of what the 
information means, no matter whether it is given numerically or, in this case, visually. 

The situation described also applies to Germany where some states have incorporated a 
larger amount of statistics and data analysis into the mathematics curriculum. Our 
personal experience with teacher students teaching in 8th grade (14-year-olds) has shown 
that both teachers and learners tend to ignore the mathematical concepts behind the 
statistical analysis and fall back to recipes that enable them to solve the standard 
exercises from the text books. In a similar way, Bakker, Biehler & Konold (2004) point 
out that some of the features inherent to box plots raise difficulties in young students’ 
understanding and use of them. As a remedy, we developed a series of activities that 
should enable students to develop a clear understanding of the statistical terms. The 
ultimate goal of the activities is that students can not only draw box plots for given data, 
but also interpret given box plots that describe real world situations.  
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THEORETICAL BACKGROUND 

Box plots are part of the field of Exploratory Data Analysis where data is explored with 
graphical techniques. Exploratory Data Analysis is concerned with uncovering patterns 
in all kinds of data. A box plot (or box-and-whisker-plot) is a relatively simple way of 
organizing and displaying numerical data using the following five values: the minimum 
value, lower quartile1, median2, upper quartile, and maximum value. Considering a set of 
data values, like, for example,  

52, 32, 29, 30, 35, 17, 42, 63 

these five values are easy to calculate:  

                                         

1 As there is no universal definition of a quartile, we dedicated a whole subsection of this article to this issue. Also, the 

original box plot uses the lower and upper hinge instead of the quartiles. 

2 The median can be defined as the number separating the lower half of a data set from the higher half in the sense that at 

least 50% of the values are smaller than or equal to the median. 

• Minimum value – 17 

• Lower quartile – 29.5 

• Median – 33.5 

• Upper quartile – 47 

• Maximum value – 63. 
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Using these five numbers, the related box plot can be constructed on a vertical 
(which we use in the following description) or horizontal scale (which is used 
in Fig. 1) by  

• Drawing a box that reaches from the lower quartile to the upper 
quartile, 

• Drawing a horizontal line through the box where the median is located, 

• Drawing a vertical line from the lower quartile (the lower end of the 
box) to the minimum value, 

• Drawing a vertical line from the upper quartile (the upper end of the 
box) to the maximum value, 

• Marking minimum and maximum with horizontal lines. 

Fig. 1 shows the box plot corresponding to the data above, created with a box 
plot applet provided by CSERD. 

The representation of a box plot communicates certain information at a 
glance: The line indicating the median illustrates the centre of the data, the 
height of the box demonstrates the spread of the central half of the data, and 
the length of the two lines above and below the box show the spread of the 
lower and upper quarters of the data. 

In our box plot visualisation we do not use outliers, as these are not used in the 
standard textbooks, either. 

Various authors have declared that box plots are particularly useful for easily 
comparing two or more sets of data values (e.g. Kader & Perry, 1996; 
Mullenex, 1990). In order to illustrate this idea, compare two data sets where 
the minimum and maximum values as well as the arithmetic mean are equal 
and reveal no hint of how to draw conclusions about the values as shown in 
Fig. 2. 
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Figure 1: A box plot created online1 for the sample data in this article 

It is obvious that in the second case, the box is much smaller than in the first 
one, indicating that the spread of the central half of the data is lesser. 

We use this technique extensively in the exercises that are part of the teaching 
unit. 

A Useful Quartile Definition 

There is no universal definition of a quartile; actually, there are at least five 
different definitions in use (Weisstein 2008). The situation is even worse for 
software packages. According to Hyndman and Fan (1996) even within a 
single software package several definitions might be used concurrently. A 
visualisation sometimes uses a different definition than a numerical 
calculation. One reason for this is that the original concept of box plots as 
introduced by Tukey (1977) used the hinges of a data set instead of the 
quartiles, which are different in one of four cases. Unsurprisingly, the concept 
of a quartile is obscure to most students and even teachers. 

                                         

1 http://www.shodor.org/interactivate/activities/boxplot/ . Also available in the NCTM Illumniations database 

(NCTM 2008) 
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Figure 2: Two box plots with different interquartile ranges 

School textbooks in Germany usually do not give an exact definition of 
quartiles, but combine a colloquial description with a recipe to calculate the 
quartiles. All definitions are not based on the desired result (i.e., “the first 
quartile is a value such that at least 25% of the values are less or equal, and at 
least 75% of the values are greater or equal”), but on a specified way to 
calculate them (i.e. “the first quartile is the value that is placed at position 
(n+1)/4, if this is an integer, else…” or similar). Unfortunately, these recipes 
are incompatible with the QUARTILE function as provided by Excel, which is 
the most common tool for data analysis in German schools, besides the 
availability of special purpose educational tools for statistical analysis like, 
e.g., Fathom (Key Curriculum Press, 2008). The documentation of the 
QUARTILE function in Excel2 is similar to the text book definitions of 
quartiles: it lacks a formal definition or explanation of the desired properties, 
and focuses on examples instead. It is not possible to explain the results of 
Excel on that basis.3  

Most of the critique above only applies to small data sets. With larger amounts 
of data the actual definition used is not as significant as with less than, say, 20 
values. Still, these data sets are the ones that are accessible to hands-on 
manipulation in the classroom. 

                                         

2 We used the German version of Excel 2004 on Mac OS X. There are explanations of the formulas used 

available, for example in learn:line NRW at http://www.learn-line.nrw.de/angebote/eda/medio/tipps/excel-
quartile.htm. Excel uses a weighted arithmetic mean for the quartiles. 

3 Büchter and Henn (2005) provide a definition of quartiles that is precise and matches the expectation that the 

lower and upper quartile are the smallest values that cut off at least 25% of the values. 
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For our study, we chose a definition that is both easy to understand and easy to 
use. A lower quartile4 of a set of values is a number qu such that at least 25% 
of all values are less than or equal to qu, and at least 75% of all values are 
smaller than or equal to qu. In many cases, this number is a value of the data 
set, but we do not restrict quartiles to be chosen from the values. The 
definition for the upper quartile qu is analogous. Using 50% instead of 25% 
and 75% we can also use it to define the median. All definitions are valid even 
if some values occur several times. 

Finding the Median and Quartiles 

A very useful and action-oriented way to find the median and quartiles is the 
following one.5 Order all values in increasing order, and write them down in a 
row of equal-sized boxes. The strip of ordered values may look like this (for 8 
values): 

1 4 7 14 26 31 33 42 

Now, fold the strip in the middle by lining up the left and right border. The 
crease will be between 14 and 26, in this example, as is the median. We may 
use any number between 14 and 26 (not including them), for example the 
arithmetic mean, 20.  

Finding the quartiles works by iterating the procedure described above. 
Folding the left and right half of the strip will create creases between 4 and 7, 
yielding a suitable lower quartile of 5.5, and between 31 and 33, which 
suggests choosing 32 as upper quartile. 

        

1 4 7 14 26 31 33 42 

        
The appeal of this method is that it also applies to situations where the creases 
pass through the boxes instead of separating two of them (i.e., for odd 
numbers of values, or if the number is not zero (modulo 4)). In that case, the 
(only) suitable value for the quartile (resp. median) is the value in that box. 
The conditions of our definition above are fulfilled automatically. 

                                         

4 We are using the standard German notation here, instead of Q1 and Q3 for lower and upper quartile. 

5 A student teacher, Simone Seibold, came up with this method during her traineeship in school. 
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Of course, the method is not suitable for real computations with data sets of 
significant size, but only for the proper conceptualisation. It can easily be 
transferred to a formula for the quartile and medians, however. 

Advantages of Using Technology 

Computers are a major reason for the increasing importance of statistics, and 
vice versa. The whole field of data mining became feasible only through the 
computing power to analyse large sets of data easily. Actually, the first 
applications of mechanized computing were of statistical natures, for example 
in the 1890 United States census (Hollerith 1894). 

In general, multimedia learning bears advantages, in particular if several 
representations of a situation have to be connected mentally (see Schnotz & 
Lowe 2003, Cuoco & Curcio 2001). Relating to suitable design for 
multimedia learning, we refer to the book of Mayer (2003) that details some of 
the guiding principles. This being said, the existing online tools for creating 
box plots disregard these principles. Even the online tool that is officially 
endorsed by the NCTM (see Fig. 1) violates most of these rules. For example, 
the distant placement of the data entry and the box plot is in clear 
contradiction to the Spatial Contiguity Principle of Mayer. 

The quality of interaction is another measure for multimedia learning. The 
direct interaction with a simulation with immediate feedback supports the 
learner (Raskin 2000). Even if there is no such concept of a “level of 
interactivity,” as it is not a one-dimensional scale, such interaction is 
considered a key ingredient of good software (Niegemann et. al 2003, 
Schulmeister 2007). Sedig and Sumner (2006) categorized the possible types 
of interaction in mathematics software. Again, the activities found on the web 
so far do not obey these rules.  

DESIGN OF THE ACTIVITIES 

Based on the theoretical analysis given above we designed a set of exercises 
that enables the students to experience both the power and the restrictions of 
box plots. In all exercises students use the same interactive applet.6 The applet 
is embedded into a plain web page and can be used without prior installations 
using a standard Internet browser. Using this applet, students can view and 
manipulate data with up to 22 values (the limit is not due to technical reasons, 
but given by the screen size). They can add or remove data, change data by 
dragging the associated data point with the mouse vertically, and re-order 

                                         

6 see http://kortenkamps.net/material/stochastik/Quartile.html. The applet is based on Cinderella (Richter-

Gebert & Kortenkamp 2006). 
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values by dragging the points in direction of the x-axis. Points that have been 
added by the students are shown in red, others that were given are depicted in 
green. 

According to Biehler, Backers and Konold (2004), it is helpful for students if 
individual cases can be recognized within the box plot representation. This is 
granted in the applet that we use in our study. All data is visible at all times. 
While the students are manipulating the data, the current mean value is 
displayed both numerically and by a dashed horizontal line. The values that 
correspond to the data points are shown numerically in a white box below 
each point (Fig. 3). 

If the values are ordered ascending the applet adds more statistical information 
to the visualisation. To the left of the values the corresponding box plot 

showing the minimum, maximum, quartiles and median, is drawn. Those are 
connected through dashed lines with the corresponding “creases” and the 
values that are shown below the data. The blue bars mark the lower and upper 
quarters of the values as well as the central half (Fig. 4). 

Finally, students can easily create a new data set by changing all values 
randomly. This enables them to quickly create new situations.  

 

 

Figure 3: The interactive applet with unordered values 
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Figure 4: When the data set is ordered additional information and the box plot 
is shown 

Exploratory Exercises 

After a general introduction into the basic concepts and tools of statistical 
analysis, the students first work on standard textbook exercises, both using the 
manual approach described above and the applet. After that, we present a new 
set of exercises that are not based on real (or fake) data, but focus on 
modifying data sets in order to change or preserve the measures of variation: 

a. Change only the arithmetic mean by changing values.  

b. Change only the minimum or maximum by changing values. 

c. Change only the length of the whiskers 

d. Change only the size of the box (the interquartile range) 

e. Add values without changing the box plot. 

f. Remove values without changing the box plot 

g. Try to move the arithmetic mean outside of the box 

h. Try to move the median outside of the box 

Our primary goal is that students understand that box plots are a compact 
visualization of five (or six, depending on the plot) statistical measures, which 
in turn describe the distribution of values in a data set. Based on these 
measures it is possible to draw conclusion about the original set. Students 
should be able to find as many conclusions as possible, while not over-
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interpreting the measures. The activities force the students to create data sets 
that differ only in certain aspects, while showing an interactive visualization 
of the data and the measures. 

For example, while experimenting with (d) students will see that for a 
distribution with smaller box (i.e. a smaller interquartile range) the values in 
the central half are more densely distributed than for a distribution with a 
larger box.  

Also, common misconceptions like a correspondence between the size of the 
box and the number of values in the data set are addressed. Adding or 
removing values does not necessarily change any of the measures of variation.  

EMPIRICAL STUDY 

In line with the recommendations formulated by a group of stochastic 
educators in Germany (Arbeitskreis Stochastik, 2003), the participants in our 
study are aged at least 15 years. We test the material in schools in two German 
states, North Rhine-Westphalia and Baden-Württemberg. 

In order to ensure the comparability and reproducibility of the tests, the 
introduction to the necessary concepts is provided as a handout for the 
students with an accompanying teacher’s manual. After this introduction, 
students work independently in groups of two with the exercises. 

The planned assessment consists of a series of boxplots for real world data, 
taken from magazines or newspapers, that the students are asked to analyze 
and interpret. They have to write short articles summarizing the data. This 
design of the study – students are asked to solve a task they did not practise 
before – is used in order to answer our main research question: Can students 

understand better which information box plots convey if they work with them 

interactively on abstract data sets? 

RESULTS 

The study will be conducted in November 2008, and we expect to be able to 
show first results at CERME 6 in January.  

CONCLUSION 

We agree with the NCTM (2000) standards that students should also be able 
to create and use graphical representations of data in form of box plots as well 
as discuss and understand the correspondence between data sets and their 
graphical representations.  
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While box plots are an appealing tool for teaching, we still need research that 
proves whether working with box plots increases the ability of students to 
analyze and interpret data. Based on an approach that is easy to implement 
into the classroom, we provide a theory-based teaching unit that tries to enable 
students to understand box plots as a tool. As the applets used do not need 
further software packages, we hope for a wide reusability. At the same time, 
we are currently investigating the efficacy of our approach. 

Biehler & Kombrink (2004) describe how they use interactive tools based on 
Fathom for teaching elementary stochastics at university level. In case we can 
prove that our activities are suitable for teaching in school, the future teachers 
that received a thorough education in statistics will be able to use their skills in 
school even if only basic ICT equipment is available. 
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Abstract: In this overview article we describe the manifold achievements and 

challenges of Intergeo1, a project co-funded within the eContentplus 

programme2 of the European Union.  

THE INTERGEO PROJECT 

The Intergeo project started in October 2007 and will be funded until 
September 2010. Its main concern is the propagation of Interactive or 
Dynamic Geometry Software. 

Goals 

Interactive Geometry is a way to improve mathematics education by using 
computers and Dynamic Geometry Software (DGS) and there are many 
advantages in comparison to “classical” geometry without DGS. Figures can 
e.g. be easily manipulated [see e.g. Roth 2008] and thus virtually be brought 
to life, comparable to what movies mean to images or to what interactive 
computer games mean to motion pictures. 

It is therefore not amazing that Interactive Geometry obtains more and more 
attention in many educational institutions. Around 25 per cent of the countries 
within the EU refer explicitly to DGS in their national curricula or guidelines 
and roughly 40 per cent refer to ICT in general. And although the remaining 
countries do not mention ICT, some of them recommend the use of DGS in 
schools [Hendriks et al. 2008]. 

                                         

1 http://inter2geo.eu 

2 http://ec.europa.eu/information_society/activities/econtentplus/index_en.htm 
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Still, the adoption of DGS at school is often difficult. Despite the fact that a lot 
of DGS class material exists, Interactive Geometry is still not used in 
classrooms regularly. Many teachers do not seem to know about the new 
possibilities, or they do not have access to the software and/or resources. 

The Intergeo Project has identified the three following major barriers, that 
have a negative impact on the use of Interactive Geometry in classrooms 
[Intergeo Project 2007]: 

• Missing search facilities 
Though many resources exist, there remains the problem of finding 
and accessing them. If the files were put on the internet by their 
developers, they are virtually scattered all over the web and it is 
extremely hard to retrieve them by using search engines like Google. 

• Lack of interoperability 
There are many different programmes for Interactive Geometry on 
the market and each software has its own proprietary file format. 
Thus, finding a file does not automatically mean that it can be used – 
it must be a file for the specific software that is used. 

• Missing quality information 
And even if a teacher finds a file and the file works with her DGS, it 
may still be unsuitable for the use in class due to a lack of quality. 
Lacking quality can be software-sided in the way the figures are 
constructed or missing (or even wrong) mathematical background. 

The aims of Intergeo are to dispose of the problems stated. In other words, 
Intergeo will 

• enable users to easily find the resources they are looking for, 
• provide the materials in a format that can be used with different DGS 

systems, and 
• ensure classroom quality. 

All three facets will be dealt with in the following chapters in extenso. 

Furthermore, Intergeo attends to a topic that is mostly neglected but of high 
importance nonetheless: the question of copyright.  

Consortium 

The Intergeo Consortium, the founding partners of the Project, assembles 
software producers, mathematicians, and mathematics educators: 
Pädagogische Hochschule Schwäbisch Gmünd (D), Université Montpellier II 
(F). Deutsches Forschungszentrum für künstliche Intelligenz DFKI (D), 
Cabrilog S.A.S. (F), Universität Bayreuth (D), Université du Luxembourg 
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(LUX), Universidad de Cantabria (ES), TU Eindhoven (NL), Maths for More 
(ES), and Jiho!eská Univerzita v "esk#ch Bud$jovicích (CZ). As the common 
interest of all partners is the propagation of sensible use of Interactive 
Geometry in the classroom, it was possible to collect both commercial, semi-
commercial and free software packages. This is one of the key ingredients of 
the project: By building upon the joint knowledge and expertise of all parties, 
we hope to be able to address the needs of the teaching community. 

Participation of External Partners 

The participation of External Partners, as Associate Partners, Country 
Representatives, and User Representatives justifies the basis for assuring the 
sustainability of the projects’ goals as mentioned above. Furthermore, 
gathering partners, as software developers, teachers, and persons at school 
administration level enables the development of a Europe-wide network that is 
indispensable for obtaining the projects’ major achievements.  

Since the project start in October 2007, several key actors in interactive 
geometry throughout Europe, including software producers, mathematics 
educators, governmental bodies, and innovative users that can provide 
additional content or serve as test users for the first content iterations were 
acquired.  

Associate Partners 

The role of Associate Partners implicates a variety of tasks and expectations, 
as the adoption of the common file format for their software, the provision of 
significant content to the Project, the development of ontologies, and the 
conduction of classroom tests. The project could successfully find several 
important Associate Partners, see [Intergeo Project 2008] and the following 
table. 

Table: List of Associate Partners 

Nr. Country Name Nr. Country Name 

1 Austria / USA Markus Hohenwarter (GeoGebra) 15 Germany Andreas Göbel (Archimedes Geo3D) 

2 Brazil Leônidas de Oliveira Brandão (iGeom) 16 Germany Reinhard Oldenburg 

3 Canada / Spain 
Philippe R. Richard, Josep Maria Fortuny 

(geogebraTUTOR) 
17 Germany Andreas Meier 

4 Canada Jérémie Farret (3D Geom) 18 Germany Roland Mechling (DynaGeo) 

5 Croatia Sime Suljic (Normala) 19 Italy Giovanni Artico (CRDM) 

6 France Cyrille Desmoulins 20 Luxembourg Daniel Weiler 

7 France Odile Bénassy (OFSET) 21 México Julio Prado Saavedra (GeoDin) 

8 France François Pirsch (JMath3D) 22 Portugal Arsélio Martins 

9 France The Sesamath association 23 Portugal José Francisco Rodrigues (CMAF) 

10 France EducTice - INRP / Luc Trouche 24 Slovakia Dusan Vallo 

11 France IUFM - Jacques Gressier (Geometrix) 25 United Kingdom Albert Baeumel 
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12 Germany Jürgen Roth (Universität Würzburg) 26 United Kingdom Nicolas van Labeke (Calques 3D) 

13 Germany Heinz Schumann 27 United States Joshua Marks (Curriki) 

14 Germany René Grothmann (C.a.R. / Z.u.L.) 

 

Country Representatives   

For each EU country a Country Representative serves as a contact person in 
their respective country. They come from ministries of education, preferably, 
and enable the Project to easily contact the relevant persons at school 
administration level. Based on these contacts, the project develops ways to 
map curricula into the ontology for geometry that suits all countries of the EU. 
The project could successfully find several Country Representatives, and a list 
is available at [Intergeo Project 2008]. 

User Representatives 

User Representatives, as teachers and software partners, build the basis for the 
sustainability of the project. They are a contact point with their associations, in 
order to support the relationship with potential Intergeo-users [Intergeo 
Project 2008]. 

• Selected teachers ease experimentations in the classroom of educational 
content gathered by the project, promote the use of the Intergeo-
platform and the philosophy of resource sharing and quality control.  

• Selected Software-partners promote the uploading of content to the 
Intergeo-platform. 

Among others, the selection of external partners will be performed at several 
local user meetings during the project period. The local user meetings have a 
central role in gathering the community of practice. They intend to help 
providing a complete European coverage:   

• The Local User Meetings present Intergeo to the users: The need of a 
common file format for interoperability, the need of a web platform to 
share resources, the need of the ontology and the curriculum mapping to 
share resources across all European countries. 

• The Local User Meetings are a good way to reach power users and 
engage them into the project to improve the projects’ dissemination. 

• Local User Meetings identify suitable schools for the Quality 
Assessment.  
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MAJOR ACHIEVEMENTS 

Content Collection 

The consortium promised to offer a significant amount of content for use in 
the database. Before the project started in Oct. 2007 we identified more than 
3000 interactive resources to be used. All these and more3 have been collected 
through the Intergeo platform by September 2008, first as traces, and now 
being converted to real assets that are searchable and tagged with meta-data. 
The available content ranges through all ages and educational levels, and also 
mathematical topics and competences. See http://i2geo.net to access and use 
the content. 

Copyright/Licence issues 

A major issue with content re-use and exchange is the handling of intellectual 
property rights. This affects not only the copying of resources, but also the 
modification and the classroom use. Without being able to process the data, it 
is also impossible to offer the added value of cross-curriculum search, for 
example. 

Thus, all content that is added to the Intergeo portal has a clear license, usually 
of the creative commons type allowing for modification and free (non-
commercial) use. See http://creativecommons.org for details. 

Theoretical Foundation For Cross-Curriculum Categorization and 
Search 

Interactive geometry has one quality that makes it very particular among 
learning resources: it is often multilingual. This led us naturally to propose a 
search tool for interactive geometry resources that is not just a textual search 
engine but a cross curriculum search engine. 

A simple scenario can explain the objective of cross-curriculum search: a 
teacher in Spain contributes a Cabri construction which is about the 
intercepting lines theorem (the Teorema de Tales) and measuring segment 
lengths; a teacher in Scotland looks for a construction which speaks about the 
enlargement transformation, segment lengths, and the competency to 
recognize proportionalities. They should match: the Scottish teacher should 
find the Cabri construction of the Spanish teacher (and be able to convert it to 
his preferred geometry system). No current retrieval system can afford such a 
matching process: there is no common word between the annotation and the 
query. 

                                         

3 On September 30th, 2008, there was a total amount of 3525 traces available. 
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For cross-curriculum matching to work, a language of annotations is needed 
that encompasses the concepts of all curriculum standards and that relates 
them. Careful observation of the current curriculum standards (see [Laborde et 
al. 2008]) has shown that topics, expressed as a hierarchy, and competencies 
are the two main type of ingredients that are needed. To this end the Intergeo 
project has built an ontology of topics, competencies, and educational levels 
called GeoSkills. This OWL ontology [McGuinness et al. 2004] has been 
structured and is now being populated by a systematic walk through the 
national curriculum standards; a report of this encoding is at [Laborde et al. 
2008]; completeness for several school-years has been reached in French, 
English, and Spanish curriculum standards. Because the edition of an ontology 
using a generic tool can be difficult, a dedicated web-based tool is under work 
which will make it possible for the complete German, Spanish, Czech, and 
Dutch curriculum standards to be encoded by the Intergeo partners and its 
associates. 

For the match to happen, the input 
of topics or competencies has to 
be cared for. We use the auto-
completion paradigm for this 
purpose: the (textual) names of 
each topic and competency are 
searched for in this process and 
the user can thus choose the 
appropriate node with sufficient 
evidence, maybe browsing a 
presentation of the topics and 
competencies. An alternative 
approach proposed is to browse 
curriculum standards, being 
documents that teachers potentially 
know well, in order to click a 
paragraph to choose the underlying 
topics and competencies. 

Quality Assessment Framework 

A Quality Assessment Framework for the Intergeo project was set up based on 
a questionnaire filled freely by the teachers themselves [Mercat et al. 2008]. 
This assessment has two different aims: 

Figure 5: The skills textbox 
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• To rank the resources so that, in response to a query, "good" resources 
are ranked before "bad" resources, at equal relevance with respect to the 
query. 

• To help improve resources by identifying criteria to work upon in order 
for the author to revise his resource according to the user's input. 

The questionnaire is both easy and deep; it can provide a light 2 minutes 
assessment as well as a deep pedagogical insight of the content. This is 
achieved by a top-down approach: The quick way just asks for 8 broad 
statements that can be answered on a scale from "I agree" to "I disagree": 

• I found easily the resource, the audience, competencies and themes are 
adequate 

• The figure is technically sound and easy to use  

• The content is mathematically sound and usable in the classroom  

• Interactivity is coherent and valid  

• Interactive geometry adds value to the learning experience  

• This activity helps me teach mathematics  

• I know how to implement this activity  

• I found easily a way to use this activity in my curriculum progression 

These broad questions can be opened up by the reviewer to give more detailed 
feedback on issues of interest for him, such as "Dragging around, you can 
illustrate, identify or conjecture invariant properties" in the "Interactive 
geometry adds value to the learning experience" section.  

Of course a thorough questionnaire is weighted more than a quick reply in the 
averaging of the different answers. The questionnaire is to be taken twice, as 
an a priori evaluation, before the actual course, and as an a posteriori 
evaluation, after the teaching has taken place. This second variant is being 
more weighted than the first one. 

Different users are weighted differently as well: seasoned teachers with a lot 
of good activity, or recognised pedagogical experts, will have a high weight: 
their reviews are taken into account more than the average new user. Negative 
behaviour like steady bashing or eulogy will, on the contrary, lower user's 
weight. We are thinking as well about a social weight: teachers could flag 
some of their colleagues as "leaders", users whose past choices they liked, 
because they are teaching at the same level for example, and the weight of 
these leaders would increase. 
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The I2Geo Platform 

The central place of exchange of interactive geometry constructions is a web-
platform; the i2geo.net platform is becoming a server where anyone with 
interest to interactive geometry can come to search for it and to share it. 

The i2geo.net platform is based on Curriki, an XWiki-extension tuned for the 
purpose of sharing learning resources: strong metadata scheme, quality 
monitoring system and self-regulated groups. Being based on a wiki platform, 
Curriki offers an online editing and inclusion facility and thus also makes 
collaborative content 
construction possible. 

The i2geo platform has three 
major adaptations compared to 
the tools provided by Curriki: 
the search and annotation tools, 
the review system, and the 
support for interactive 
geometry media. 

The i2geo search and 
annotation tool uses the 
GeoSkills ontology described 
above: this allows the trained 
topics and competencies, the 
required ones, and the 
educational levels to be all 
entered using the input 
methods described above 
(auto-completion and pick-
from-document).  

Such elaborate methods are needed if one wants to honour the rich set of 
educational levels in Europe and the diversity of curriculum standards 
sketched in [Laborde et al. 2008]. 

The i2geo search tool uses the GeoSkills ontology as well: queries for any 
concept are generalized to neighbouring concepts which thus allows the match 
of the intercepting-lines-theorem when queried for the concept of 
enlargement. 

The i2geo platform is under active development and can be experimented with 
on http://i2geo.net. Its current development focus is the input of metadata 
annotated resources and the review system described in the previous sections. 

Figure 6: Editing metadata 
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The services specialized to the geometry resources, enabling easy upload, 
preview, and embedding of interactive geometry resources will be provided 
later. 

A Common File Format 

A wide variety of Dynamic Geometric Systems (DGS) exist nowadays. Before 
this project, each system used incompatible proprietary file formats to store its 
data. Thus, most of the DGS makers have joined the project to provide a 
common file format that will be adopted either in the core of the systems or 
just as a way to interchange content. 

The Intergeo file format aims to be the convergence of the common features 
of the current DGS together with the vision of future developments and the 
opinion of external experts. Its final version based on modern technologies 
and planed to be extensible – to capture the flavour of the different DGS – 
could serve as a standard in the DGS industry. 

The specification of the first version of the Intergeo file format has been 
released by the end of July as deliverable D3.3 [Hendricks et al. 2008] after 
intensive collaboration between DGS software developers and experts. At 
present, the file format is restricted to the geometry in the plane, although it 
does not seem difficult to extend it, in the future, to the space. Besides it 
specifies only a restricted subset of possible geometric elements, which 
however lead to an agreement on the structure and basic composition of the 
format. 

The general framework was clear from the outset: to design a semantically 
rich format that could be interpreted by at least all DGS in the consortium. 
One main design decision in this respect consists of the choice of 
constructions, as opposed to constraints, because in general, it is very difficult 
to give any particular solution for a set of constraints. Besides constraints of a 
strictly classical geometric nature do not say anything about the dynamic 
behaviour of a figure. A natural way to shed light on both of these problems is 
a more precise specification of how the objects depend on each other, 
stipulating first which objects are free and then proceeding step by step. Such 
a specification is called a construction. This decision implies less 
interoperability with constraint-based systems, since some of their resources 
will not be encodable into this format. But it ensures that construction-based 
DGS – the majority of the existing systems – will be able to interpret the 
resources. 

As stated in the Description of Work, OpenMath Content Dictionaries are 
used to specify the symbols – the main ingredients used to describe a 
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construction – of the file format. The XML schema can be generated 
automatically with some knowledge of how the atoms are expressed in XML. 
The complete list of official symbols defined so far can be found at 
http://svn.activemath.org/intergeo/Drafts/Format/. 

As soon as version 1 of the file format got more concrete, some software 
developers started to investigate its practical usage by integrating it (partially) 
into their software. It was possible to move simple content between several of 
the packages in the project. For more information on the file format we refer 
to [Hendriks et. al 2008], which also lists the relevant URLS to see the 
progress. 

 

NEXT STEPS AND CHALLENGES 

Metadata Collection 

With the arrival of the first curriculum-aware beta version of the i2geo.net 
platform we are now able to attach metadata to the existing content. This 
includes information about the authors, but also about the intended audience 
for a resource, the skills and competences that can be acquired through the 
resource, the prerequisites, and, of course, the topic – categorized according to 
the ontology. 

While some of this information can be extracted automatically, there is still 
need for a lot of manual intervention. At the same time, the curricula available 
on the platform have to be revised and extended to accommodate all the 
content. 

Quality Testing 

The partners in the Quality Assurance work package will conduct small-scale 
experimentations in the classroom during the period January-April 2009. 
Teachers, whether alone or in homogeneous teams, will  

• Use the platform in order to identify content suitable for their course,  

• First fill an a priori questionnaire,  

• Teach the resource in the classroom,  

• And finally report on its use by updating the a posteriori questionnaire. 

We will have to agree on a modus operandi, recruit volunteers, especially 
among the teachers that were contacted during the users meetings, instruct 
them and have them conduct the experimentations. 
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Then these assessments will be analyzed. The analysis will be used to 
iteratively improve the quality assessment framework according to the users' 
feedback on usability and relevance of the different items and of the online 
platform.  

It is a primary concern that all resources receive at least basic testing. Thus, 
we will check the overall coverage in the project and, if necessary, identify 
resources to be tested. 

As the quality assessment primarily aims to make it possible to improve 
ranking and quality of the resources, we can use this as a performance 
indicator. For this, the changes in ranking due to the quality evaluation will be 
measured. Additionally, selected examples will be analysed in order to 
understand whether authors can infer improvements of their resources. 

Via interviews with selected authors we try to understand how they perceived 
quality assessment and how we can improve its perception as positive, 
constructive and scientific more than negative, useless and personal. 

In the final year of the project, mass scale experimentations will take place. 
More countries and more parts of the curriculum shall be covered. 

File format 

As for version 1 of the file format some decisions that should be made with 
the help of other developers of DGS have been postponed, those experts are 
invited to join the discussion and propose solutions or give remarks, see 
[Hendriks 2008]. Thus, substantial modifications of this specification are 
expected to solve all practical issues that might arise. 

Better Visibility 

The ultimate goal and a measure of success is the visibility of the Intergeo 
platform in Europe as a whole. After the first year was devoted to setting up 
the technical prerequisites and administrative processes, as well as clearly 
describing how we can measure and improve the standards for successful 
interactive resources, we can now offer a usable platform with substantial 
content. We now have to make the platform more visible and raise interest 
within the didactical community,  the teachers, and the governments 
throughout Europe. 

Today, the websites of the individual software packages from the project still 
have much more visits a day than the i2geo.net portal. So a first step will be to 
announce the portal on the websites of the software packages and on the 
websites of (associate) partners using banners and an i2g-compliance badge 
that shows the compatibility of the software with the i2g file format. 
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CONCLUSIONS AND CALL FOR PARTICIPATION 

In this article, we can only highlight the basic structure of the project. We 
invite everybody to visit the project website at http://inter2geo.eu, submit their 
own content on http://i2geo.net, join as an Associate Partner or become a User 
or Country Representative. 
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Assumptions of multiple mental representations lead to the presumption of an 

enhanced mathematical learning, especially of the process of internalization, 

due to MERs (Ainsworth 1999) and MELRs (Harrop 2003). So far, most 

educational software for mathematics at the primary level aims to help 

children to automatize mathematical operations, whereby symbolical 

representations are dominating. However, what is missing is software and 

principles for its design that support the process of internalization and the 

learning of external representations and their meaning themselves – in 

primary school these are in particular symbols. This paper summarizes the 

current state of research and presents a prototype that aims to the above-

mentioned purpose. 

INTRODUCTION 

In this article we describe the theory and new achievements of a prototypical 
educational software for primary school arithmetic. After developing the 
guiding principles that are based on multimedia learning models, we present 
DOPPELMOPPEL1, a learning module for doubling, halving and 
decomposing in first grade. 

THE COGNITIVE THEORY OF MULTIMEDIA LEARNING (CTML) 

In the 1970s and 80s it was assumed that comprehension is limited to the 
processing of categorical knowledge that is represented propositionally. 
Nowadays, most authors assume the presence of multiple mental 
representation systems (cp. Engelkamp & Zimmer 2006; Schnotz 2002; Mayer 
2005) – mainly because of neuro-psychological research findings. With regard 
to multimedia learning the Cognitive Theory of Multimedia Learning (CTML) 
of Mayer is to emphasize (Fig. 1).  

                                         

1 see http://kortenkamps.net/material/doppelmoppel  for the software 
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Figure 1: The Cognitive Theory of Multimedia Learning (CTML) of Mayer 

Mayer (2005) acts on the assumption of two channels, one for visually 
represented material and one for auditory represented material. The 
differentiation between the visual/pictorial channel and the auditory/verbal 
channel is of importance only with respect to the working memory. Here 
humans are limited in the amount of information that can be processed 
through each channel at a time. Besides the working memory Mayer assumes 
two further types: the sensory memory and the long-term memory. 
Furthermore, according to Mayer humans are actively engaged in cognitive 
processing. For meaningful learning the learner has to engage in five cognitive 
processes: 

(1) Selecting relevant words for processing in verbal working memory 

(2) Selecting relevant images for processing in visual working memory 

(3) Organizing selected words into a verbal model 

(4) Organizing selected images into a pictorial model 

(5) Integrating the verbal and pictorial representations, both with each 
other and with prior knowledge (Mayer 2005, 38) 

Concerning the process of internalization the CTML is of particular 
importance. The comprehension of a mathematical operation is not developed 
unless a child has the ability to build mental connections between the different 
forms of representation. According to Aebli (1987) for that purpose every new 
and more symbolical extern representation must be connected as closely as 
possible to the preceding concrete one. This connection takes place on the 
second stage of the process of mathematical learning where the transfer from 
concrete acting over more abstract, iconic and particularly static 
representations to the numeral form takes place (Fig. 2). A chance in the use 
of computers in primary school is seen in supporting the process of 
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internalization by the use of MELRs. This is the main motivation for the 
research on how the knowledge about MERs and MELRs in elementary 
mathematics and educational software is actually used and how it can be used 
in the future. 

TO THE REALISATION OF MERS AND MELRS IN ELEMENTARY 
MATHEMATICS SOFTWARE 

Despite the fact that computers can be used to link representations very 
closely, it is hardly made use of in current educational software packages. 
Software that offers MERs and MELRs with the aim to support the process of 
internalization is very rare. This is also the reason why tasks are mainly 
represented in a symbolic form (Fig. 2). 

 
Figure 2: Forms of external representations combined with the four stages of the process of mathematical learning 

Nevertheless, most software offers help in form of visualizations and thereby 
goes backward to the second stage. This is realised in different ways, which is 
why a study of current software was done with regard to the following 
aspects: 
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- Which forms of external representations are combined (MERs) and how 
are they designed? 

- Does the software offer a linking of equivalent representations 
(MELRs) and how is the design of these links? 

After this analyse, a total of sixty 1st- and 2nd-grade-children at the age of six 
to eight years were monitored in view of their handling of certain software 
(BLITZRECHNEN 1/2, MATHEMATIKUS 1/2, FÖRDERPYRAMIDE 1/2). 
Beside this own exploration – which will not be elaborated at this point - there 
is only a small number of studies that concentrates on MERs and MELRs on 
elementary mathematics software. In 1989, Thompson developed a program 
called BLOCKS MICROWORLD in which he combined Dienes blocks with 
nonverbal-symbolic information. Intention was the support of the instruction 
of decimal numeration (kindergarten), the addition, subtraction and division of 
integers (1st – 4th grade) as well as the support of operations with decimal 
numbers (Thompson 1992, 2). Compared to activities with “real things”, there 
were no physical restrictions in the activities with the virtual objects to denote. 
Furthermore the program highlighted the effects of chances in the nonverbal-
symbolic representation to the virtual-enactive representation and reverse. In 
his study with twenty 4th-grade-children Thompson could show that the 
development of notations has been more meaningful to those students who 
worked with the computer setting compared to the paper-pencil-setting. The 
association between symbols and activities was established much better by 
those children than by the others. 

Two further studies that examined multi-representational software for 
elementary mathematics are by Ainsworth, Bibby and Wood (1997 & 2002). 
The aim of COPPERS is to provide a better understanding of multiple results 
in coin problems. Ainsworth et al. could find out, that already six-years-old 
children do have the ability to use MERs effectively. The aim of the second 
program CENTS was the support of nine- to twelve-years-old children in 
learning basic knowledge of skills in successful estimation. There were 
different types of MERs to work with. In all three test groups a significant 
enhancement was seen. The knowledge of the representations themselves as 
well as the mental linking of the representations by the children were a 
necessary requirement. The fact that a lot of pupils weren’t able to connect the 
iconic with the symbolic representation told Ainsworth et al. (1997, 102) that 
the translation between two forms of representations must be as transparent as 
possible. 

The opinions about an automatic linking of multiple forms of representations 
vary very much. Harrop (2003) considers that links between multiple 
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equivalent representations facilitate the transfer and thus lead to an enhanced 
understanding. However, such an automatic translation is seen very 
controversial. Notwithstanding this, it is precisely the automatism that 
presents one of the main roles of new technologies in the process of 
mathematical learning (cf. Kaput 1989). It states a substantial cognitive 
advantage that is based on the fact that the cognitive load will be reduced by 
what the student can concentrate on his activities with the different forms of 
representations and their effects. An alternative solution between those two 
extremes – the immediate automatic transfer on the one hand and its non-
existence on the other hand – is to make the possibility to get an automatic 
transfer shown to a decision of the learner. 

PRINCIPLES FOR DESIGNING MERS  

The initial point and justification of multimedia learning is the so-called 
multimedia principle (cf. Mayer 2005, 31). It says that a MER generates a 
deeper understanding than a single representation in form of a text. The reason 
for this is rooted in the different conceptual processes for text and pictures. In 
being so, the kind of the combined design is of essential importance for a 
successful learning. The compliance of diverse principles can lead to an 
enhanced cognitive capacity. Thus Ayres & Sweller (2005) could find a split-

attention-effect if redundant information is represented in two different ways 
because the learner has to integrate it mentally. For this more working space 
capacity is required, and this amount could be reduced if the integration were 
already be done externally. Mayer (1995) diversifies and formulates besides 
his spatial contiguity principle the temporal contiguity principle. According to 
this principle, information has not only to be represented in close adjacency 
but also close in time. If information is also redundant, the elimination of the 
redundancy can lead to an enhanced learning (redundancy-effect). The 
modality principle unlike the split-attention principle does not integrate two 
external visual representations but changes one of it into an auditory one. 
Hence an overload of the visual working memory can be avoided. 

In addition to the modality principle Mayer recommends the segmenting 
principle as well as the pretraining principle to enhance essential processes in 
multimedia learning. As a result of the segmenting principle multimedia 
information is presented stepwise depending on the user so that the tempo is 
decelerated. Thus the learner has more time for cognitive processing. The 
pretraining principle states that less cognitive effort will be needed if an 
eventual overload of the working memory is prevented in advance through the 
acquisition of previous knowledge. Finally, the abidance of the signaling 

principle allows a deeper learning due to the highlighting of currently 
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essential information. Extraneous material will be ignored so that more 
cognitive capacity is available and can be used for the essential information. 

In elementary instruction the children first of all have to learn the meaning of 
symbolic representations and how to link them with the corresponding 
activities. So the above-described principles cannot be adopted one-to-one. 
Based on an empirical examination of the handling of six- to eight-years-old 
pupils with MERs and MELRs in chosen software, we could identify new 
principles and the above-described ones could be adapted, so that their 
compliance supports the process of internalization. These principles are 
demonstrated and realized in the following example of the prototype 
DOPPELMOPPEL. 

THE PROTOTYPE DOPPELMOPPEL 

Didactical concept and tools  

The function of the ME(L)Rs in DOPPELMOPPEL is the construction of a 
deeper understanding through abstraction and relations (fig. 3). The prototype 
was built using the Geometry software Cinderella (Richter-Gebert & 
Kortenkamp 2006) and can be included into web pages as a Java applet. 

Figure 3: Functions of MERs according to Ainsworth (1999) 

Using the example of doubling and halving the children shall – in terms of 
internalization – link their activities with the corresponding nonverbal-
symbolic representation and they shall figure out those symbols as a log of 
their doing. The mathematical topic of doubling and halving was chosen 
because it is a basic strategy for solving addition and subtraction tasks. In 
addition, DOPPELMOPPEL offers to do segmentations in common use.  
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The main concern of the prototype is to offer a manifold choice of forms of 
representations and their linking in particular (MELRs). Two principles that 
lead the development are the constant background principle and the constant 

position principle. The first one claims a non-alteration of the design of the 
background but an always-constant one. Furthermore the position of the 
different forms of representations should always be fixed and visible from the 
very beginning so that they don’t constrict each other. 

DOPPELMOPPEL provides the children with the opportunity to work in 
many different forms of representations. On the one hand there is a zone in 
which the children can work virtual-enactive. Quantities are represented 
through circular pads in two colours (red and blue). To enable a fast 
representation (easy construction principle) and to avoid “calculating by 
counting” there are also stacks of five next to the single pads. According to 
our reading direction the five pads are laid out horizontally. The elimination of 
pads happens through an intuitive throw-away gesture from the “desk” or, if 
all should be cleaned, with the aid of the broom button. A total of maximal 
100 pads fit on the table (10x10). The possible activities of doubling, halving 
and segmenting are done via the two tools on the right and the left hand side 
of the desk (fig. 4). 

 

 

Figure 4: Screenshot of the prototype DOPPELMOPPEL 

The doubling-tool (to the right) acts like a mirror and doubles the laid 
quantities. The saw (to the left) divides the pads and moves them apart. Both 
visualisations are only shown for a short time after clicking on the tools. 
Afterwards, the children only see the initial situation and have to imagine the 
final situation (mirrored resp. divided) themselves. The pupils can use the 
mouse to drag the circular points on the doubling-tool and the saw to move 
them into any position. A special feature of the saw is that it also can halve 
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pads. At this point the program is responsive to the fact that already six-years-
olds know the concept of halves because of the common use in everyday life. 

The children can do nonverbal-symbolic inputs themselves in the two tables 
on the right and the left hand side. The left table enables inputs in the form 
_=_+_, the right one in the form _+_=_. The table on the right is only intended 
for doubling and halving tasks. That’s why the respectively other summand 
appears automatically after the input of one. In the table on the left any 
addition task can be entered.  

If the pupils don’t fill in the equation completely they have the possibility to 
get their input shown in a schematic-iconic representation. Depending on the 
entered figures, the pads appears in that way that the children can’t read the 
solution directly by means of their colour. The doubling-tool respectively the 
saw are placed according to the equation so that the children – like in the 
virtual-enactive representation – are able to act with the tools (fig. 5). 

 

Figure 5: Schematic-iconic representation of a task  

According to the signaling principle an arrow is highlighted when the pupils 
enter numbers in the free boxes. A click on this arrow initiates the intermodal 
transfer. A similar arrow appears below the desk after every activity done by 
the children (click on the doubling-tool respectively the saw). Here, the pupils 
have the possibility to let the software perform the intermodal transfer from 
the virtual-enactive and the schematic-iconic representation to the nonverbal-
symbolic one. This is another special feature of DOPPELMOPPEL that is 
rarely found in current educational software. If external representations are 
linked, the linking is mostly restricted to the contrary direction. Depending on 
the activity the equation appears again in the form _=_+_ or _+_=_.  Those 
equations aren’t separated consciously, however a coloured differentiation of 
the equal and the addition sign (as in the tables above) point to pay attention. 
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Besides the forms of representations there are two more functions available. 
Both –the broom to clean the desk and the exclamation mark for checking 
answers – take some time in order to encourage considerate working and to 
avoid a trial-and-error-effect. If the equation is false the program differentiates 
on the type of error. In case of an off-by-one answer or other minor mistake 
the boxes are coloured orange otherwise red. If the equation is correct a new 
box appears below. 

This prototype doesn’t already respond to modalities but the concept already 
incorporates auditory elements. 

Testing of DOPPELMOPPEL 

For the testing of DOPPELMOPPEL four versions of the prototype were 
created. Two of those feature multiple representations; the other two only 
offer single representations. One of the multiple representations provides an 
additional linking, that is an intermodal transfer in both directions (fig. 6). 

 

Figure 6: 4 versions of the prototype  

The dedication of those four versions is to make sure that it is neither the 
medium computer nor the method of instruction that causes results of the 
testing. 

28 pupils of a 1st class worked about 20 minutes per five terms with the 
program. During their work there was one student assistant who observed and 



 

CERME 6 294 WG7 

 

took care of two children. In addition, the activities of the children were 
recorded with a screencorder-software. Furthermore a pre- and a posttest were 
done. 

To the current point of time the data interpretation is still in progress but first 
results should be available to the end of January. 

CONCLUSION 

Educational software that is based on the primacy of educational theory, as 
claimed by Krauthausen and others, has to take both mathematics and 
multimedia theory into account. Carefully crafted software however, is very 
expensive in production. We hope to be able to show with our prototype that 
this investment is justified.  
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There is still a tendency to see that mathematics is not visual. At University 

education, it´s evident in several ways. One of them, is an algebraic and 

reductionist approach to the teaching of calculus. 

In order to improve educational practices, we designed an empirical research 

for the teaching and learning of integral calculus whith technological tools as 

facilitator resources of the process of teaching and learning: the use of 

predesigned software that enables to get the conceptualization in a visual and 

numeric way, and the using of a virtual platform for complementary activities 

and new forms of collaboration between students, and between teachers and 

students. 

 

Keywords: Predesigned software – virtual enviroments – registers of 
representation - social infrastructure - epistemological infrastructure 

INTRODUCTION  

The ideas, concepts and methods of mathematics presents a visual content 
wealth, which can be geometrically and intuitively represented, and their use 
is very important, both in the tasks of filing and handling of such concepts and 
methods, and for the resolution of problems. 

Experts have visual images, intuitive way of knowing the concepts and 
methods of great value and effectiveness in their creative work. Through 
them, experts are able to relate, most versatile and varied, often very complex, 
constellation of facts and results of their theory and, through such significant 
networks, they are able to choose from, so natural and effortless, most 
effective ways of solving the problems they face (Guzman, 1996). Viewing, in 
the context of teaching and learning of mathematics at the university, has to do 
with the ability to create wealthy images that individuals can handle mentally, 
can pass through different representations of the concept and, if necessary, can 
provide the mathematic ideas on a paper or computer screen (Duval, 2004). 
The creative work of mathematicians of all times has had “the visualization” 
as its main source of inspiration, and this has played an important role in the 
development of ideas and concepts of the infinitesimal calculus. 

However, there is a tendency to believe that mathematics is not visual. At 
university education, it´s evident, particularly through an algebraic and 
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reductionist approach of the teaching of calculus. One of the didactic 
phenomena which is considered essential in the teaching of Mathematical 
Analysis, is the “algebrización”, that is: the algebraic treatment of differential 
and integral calculation. Artigue (in Contreras, 2000) expresses this fact in 
terms of an algebraic and reductionist approach of the calculation which is 
based on the algebraic operations with limits, differential and integral 
calculus, but it treats the thinking and the specific techniques of analysis in a 
simplistic way, such as the idea of instantaneous rate of change, or the study 
of the results of these reasons of change. 

We believe that the problems with Mathematical Analysis learning, in the first 
year of college, have to do with this context. These difficulties are associated 
with the formalism in dealing with the concepts and the lack of association 
with a geometric approach. Anthony Orton has worked for a long time about 
the difficulties in learning calculus. His research work at the University of 
Leeds confirmed that students had difficulty in learning the concepts of 
calculus: the idea of exchange rate, the notion of a derivative as a limit, the 
idea of area as the limit of a sum (Orton, 1979). Cornu (1981) arrived at 
similar conclusions regarding the idea of "unattainable limit" and 
Schawarzenberger and Tall (1978) regarding the idea of "very near". Ervynck 
(1981) not only documented the difficulties of the students in understanding 
the concept of limit but he also remarked the importance of viewing the 
processes by successive approximations. In this sense, wue can see that usual 
graphs met in textbooks of calculus have two problems: they are static, which 
can not convey the dynamic nature of many of the concepts, and also they 
have a limited number of examples, usually one or two, which leads to 
develop, in students, a narrow image of the concept in question. (Tall and 
Sheath, 1983). In this sense, taking into account our previous exploratory 
research (Milevicich, 2008), we can say that students can not understand the 
concept of definite integral of a function as the area under the curve, because 
they do not visualize how to build this area as a sum, usually known as 
Riemann Sum. 

In terms of the educational processes, it should be noted that teachers usually 
introduce the concept of integral in a narrative way, avoiding the real purpose, 
which is to obtain more precise approximations. A simplistic approach to the 
concept is usually done, disconnected from integral calculus applications, 
which hinders the understanding of students, and consequently, the resolution 
of problems relating to calculation of areas, length of curves , volume of solids 
of revolution, and those dealing with applications to the engineering work, 
pressure, hydrostatic force and center of mass.  
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JUSTIFICATION 

Innovation in educational processes including th use of multimedia means 
demands not only on teachers´ professionalism but also new activity 
managing. Research work is currently being carried out at different 
universities aiming to find out what use teachers make of these tools and the 
specific competencies that they have to acquire for making effective use of 
them. From a didactic point of view, the usage of multimedia in teaching-
learning process, presumably, should increase students motivation, and, in that 
sense, we ask ourselves: What should be the goals of education aimed at 
improving the university today? and How can we make it easier through the 
use of technological tools?. The answers to these questions are not clear for 
us. Students, nowadays, have more and more information than they can 
process, so that one of the functions of the university education would be to 
provide them with cognitive and conceptual tools, to help them to select the 
most relevant information. University Students should try to get skill and 
develop attitudes that enable them to select, process, analyse and draw 
conclusions. This change in the goals represents a departure from traditional 
learning. In this sense, the use of a predesigned software in the classroom, 
designed within the group research, can be a teaching facilitator resource of 
the process of teaching and learning: 

! to convey the dynamic nature of a concept from the visualization,  
! to coordinate different registers of representation of a concept,  
! for the creation of personalized media best suited to the pedagogical 

requirements of the proposal. 

RESEARCH CHARACTERISTICS 

Population and sample  

The population is made up of Engineering students from Technological 
University and the specimen is a Electrical Engineering commission of about 
30 students. Regarding the characteristics of the population, some 
considerations can be made about their previous knowledge of integral 
calculus. Some students come from the Mechanic School of a known 
automotive Company and others, from a technical electricians school. Based 
on a detailed analysis of library materials used by teachers in these 
institutions, and the students’ writings, we infer that integrals are taught as the 
reverse process of derivation, with the focus on the algebraic aspects. These 
students study the concept of integral associated with a primitive, practice 
various methods of integration, transcribe or solve hundreds of exercises in 
order to calculate integrals, and some of them even achieve a considerable 
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level of skill in the use of tricks and recipes that help to be more effective in 
getting results. Another group of students come from near schools where 
geometric concepts are little, essentially the calculating of areas studied during 
primary and middle school. However, the largest group, is made up of 
students studying Mathematical Analysis for the second or third time. Some of 
them have completed the course in previous years but failed in the exams. It 
may be that those students have some ideas about integral calculus and its 
applications, or not. It is possible that those ideas interfere with the getting of 
new knowledge or hinder it (Bachelard, 1938), primarily on those students 
who associate the integral exclusively to algebraic processes. That is why it 
was very important to carry out a diagnostic test (pretest) that would allow 
exploration on the previous skills and students ideas about definite integral 
and thus, categorize according to the following levels of the independent 
variable: 

 Level 1: associate the concept of integral to the primitive of a function and 
calculates easy integrals. 

 Level 2: associate the concept of integral to the primitive of a function, 
calculates easy integrals and links the concept with the area under the curve. 

 Level 3: associate the concept of integral to the primitive of a function and 
links the concept with the area under the curve. 

Level 4: has no specific pre knowledge associated with the topic. 

Focus 
The general purposes of our research work were: 

to determine if students understand the concept of integral through the 
implementation of a proposal that would allow its teaching in a approaching 
process, using different systems of representation, according to the processes 
man has followed in his establishment of mathematical ideas, 

to analyze, in a reflective learning context, the ways in which students solve 
problems related to integral calculus,  

and the specific purposes were: 

to categorize the students, involved in the experience, according to his integral 
calculation preconceptions, at the beginning of the intervention, 

to implement a proposal that provided, on the one hand, the use of different 
systems of representation in the development of individual and group 
activities, and on the other, to promote conjeturación, experiment, 
formalization, demonstration, synthesis, categorization, retrospective analysis 
, extrapolation and argumentation, with the help of specific software, and 
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feedback on students’ early productions so they could reflect on their own 
mistakes, 

to review progress achieved after the implementation of the didactic proposal, 
to analyze the impact of using a virtual platform for complementary activities. 

Methodology  
The design is pre-experimental type of pretest - treatment - postest with a 
single group. The independent variables in this study are: the design of 
teaching and pre knowledge of students on the definite integral. The 
dependent variable is: the academic performance. 

Regarding these previous knowledge, a pretest at the beginning of the 
intervention allowed to place each student in one of the preset categories. 
After 8 weeks of intervention, a postest allowed to determine the levels of 
progress made in learning the concepts of integral calculus in relation to the 
results obtained in the past three years cohorts (2003, 2004 and 2005). In 
addition, an interview at the end of the experience was implemented, in order 
to gather qualitative information. 

In order to improve educational practices, we designed a proposal for teaching 
and learning integral calculus according to the proposal of using a pre 
designed software as indicated in the goals. In this sense: 

We designed a software package allowing the boarding of integral calculus 
from the concept of definite integral associated with the area under the curve, 
from a geometric point of view. 

We selected the problems students should solve, in a way, that their approach 
would allow to establish a bridge between conceptualization of integration and 
problems related to engineering. In that sense, the use of the computer allowed 
to have a very wide range of problems, where the choice was not conditioned 
by the difficulty of algebraic calculus.  

The students used pre designed software for: 

 a) The successive approximations to the area under a curve, considering left 
and right points on each of the subintervals. The software allows to select the 
function, the interval and the number of subdivisions. (See Figure 1). 

b) The successive approximations to the area under a curve through the graph 
of the series which represents the sum of the approach rectangles (See Graphic 
1) and the table of values (See Table 1). 

c) The visualization of the area between two curves, it also allows to 
determine the points of intersection. 
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d) The representation of the solid of revolution on different axes when rotating 
a predetermined area. (See Figure 2) 

e) The numerical and graphical representation (through table of values) of the 
area under the curve of an improper integral. 

It was designed a set of activities with the purpose students conjecture, 
experience, analyze retrospectively, extrapolate, argue, ask their peers and 
their teachers, discuss their own mistakes and evaluate their performance. 
Assessment techniques were redesigned, so that the analysis of students 
productions would provide feedback about their mistakes. 

We incorporated a Virtual Campus using Moodle supporting design, as an 
additional element, in order to keep continuity between two spaced weekly 
meetings. According to Misfeldt and Sanne (2007), communication on 
mathematical issues is difficult using computers and a weekly meeting is 
insufficient. In response to this problem, we used the virtual campus for 
communication, flexibility and cooperation, but the use of it was not a 
learning objective in itself. Instead, we used it to publish texts and exercises 
guides and also, students made active use of the forum for discussion groups.  

We also had in mind that the challenges in creating an online learning 
environment might be different when working with mathematics than in other 
topics (see also: Misfeldt et. al, 2007 & Duval, 2006). Many of the signs that 
goes into building mathematical discourse is not available on a standard 
keyboard, and the way that mathematical communication often is supported 
by many registers and modalities that are used simultaneously, as writing and 
drawing various representations on the blackboard or paper is also not 
avalilable. Students, using the Virtual Campus, had the possibility to upload 
archives showing the solving process and using every symbol they needed.  

Implementation of the proposal  

Students were distributed in small groups no more than three, who worked in 
several sub-projects. Each of them included a significant number of problems.  

Subproject No. 1: The concept of integral. 

Subproject No. 2: Fundamental theorem of Calculus. 

Subproject No. 3: Improper integrals. 

Subproject No. 4: Area between curves. 

Subproject No. 5: Applications of Integral Calculus. 

Guidelines for systematic work for each of the meetings were made. In the 
first part, it was discussed the progress and difficulties of the previous 
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practice, where the essential purpose was to ensure that students analyze their 
own mistakes, and the second part, teachers and students worked on new 
concepts at the computer laboratory. The first part of each meeting was guided 
by the teacher, but a assistant teaching and a observer teacher were present in 
the class. The second half had the same staff and an extra assistant teaching. 

The assesment took place during the whole experience through: 

! weekly productions of students reflected in their electronic folders and 
notebooks. These ones allow cells to keep comments, observations, etc.; 
very valuable material in assessing the level of understanding achieved by 
students. 

! students interaction in classes and into working groups. 
! Students participation in the discussion forums of the virtual campus.  
In that sense, spreadsheets were used for monitoring activities, which proved 
to be an effective tool to assess different aspects relevant to student´s 
performance. Summary notes taken by the observer teacher along the 8 weeks 
allowed us to infer the change of attitude in an important group of these 
students. From the initial population, made up of 30 students, 24 of them 
showed increased commitment to the development of activities. 

Some of these activities were: 

Subproject 1: Evaluate the following integrals by interpreting each in terms of areas  

a) !
3

1

dxe
x   b) ! "

3

0

)1( dxx  

Case a: because f(x)=ex is positive the integral represents the area. It ca be 
calculated as a limit of sums and a computed algebra system can be used to 
evaluate the expression. 

Case b: The integral cannot be interpreted as an area because f takes in both 
positive and negative values. But students should realize that the difference of 
areas works. 

Subproject 3:Sketch the region and find its area ( if it is possible) 

a) S={(x,y)/ 0 ! x ! ", 0! y ! Tan(x)Sec(x)} 

b) S={(x,y)/ x # 0, 0! y ! 
2
x

e
! } 

Case a: Probably students confuse the integral with an ordinary one. They 
should warn that there is an asymptote at x= !/2 and it must be calculated in 
terms of limits. At this point students must bear in mind that whenever they 
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meet the symbol !
b

a

dxxf )(  they must decide, by looking at the function f on 

[a,b], whether it is an ordinary definite integral or an improper integral. 

Case b: The integral is convergent but it cannot be evaluated directly because 
the antiderivative is not an elementary function. It is important students look 
for a way to solve the problem and although it is impossible to find the exact 
value, they can know whether it is convergent or divergent using the 
Comparition Test for Improper Integrals. 

Both examples above show activities where students need to find out solutions 
and get conclutions without teacher telling them. 

RESULTS 
The pretest was done by 30 students, the results allowed us to locate them as 
follows: 15 at Level 1, 1 at Level 2 and 14 at level 4. It should be noted that 
those who came from technical schools had achieved a considerable level of 
skill in the calculation of integrals but they didn´t know about the links with 
the concept of the area.  
The postest consisted of 6 problems related to the sub projects students had 
worked on, each of which was formed by several items. It was provided to the 
24 students remaining at the end of the experience, and took place at the 
computer laboratory, where students usually worked. In general, the level of 
effectiveness was above 50%, except in the case where they were asked to 
determine the area between two curves and then the volume to rotate around 
different axes. The difficulty was to get the solid of revolution from a shift in 
the rotation axis. Although the students had no difficulty in getting the solid 
geometrically, they could not get an algebraic expression for it.  

In a comparison with the three previous year cohorts, it was possible to 
emphasize the following differences: 

a) There were no important difficulties in linking the concepts of 
derivative and integral.  

b) An important group of students (83% of them) successfully used 
Fundamental Theorem of Calculus. 

c) In general, there were no difficulties in algebraic developments, 
however it is possible to associate the lack of such obstacles to the use 
of the computer.  
All of students tested, could associate the concept of solid revolution 
with the concept of integral, and even more, they were able to correctly 
identify the area to rotate. 
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d) The 74% of the students tested could identify improper integrals, but 
only 43% of them, correctly, applied the properties. 

e) Most of the students tested succeeded in establishing a bridge between 
the conceptualization of integration and problems related to 
engineering: 89% of them correctly solved problems relating to 
applications for work, hydrostatic pressure and force. 

The written interviews at the close of the experience reflects the importance 
that students attribute to the use of virtual campus as an additional resource: 
most of students were very keen on having prompt responses from the teacher 
when asking questions in the forum and the help offered by other students. 

One of the questions was: 

“How did teachers interventions at the forum helped, when you had 

difficulties in the development of practices? (A: they were decisive, B: they 

helped me to understand, C: they were not decisive. I managed without them, 

D: they did not contribute at all. Please explain your choice).” 

12 students selected A , 8 puplis selected B, 4 students selected C and D was 
not selected. 

Some of the explanations given by students were: 

Student a: “…They helped me because teachers answered quickly and 

clearly” 

Student b: “…Excellent, clear and concise answers that helped with the 

resolution of the problems.” 

Student c:“…There were many situations where I managed to solve a problem 

just reading the doubts of my fellow students. I have not done a lot of 

questions at the forum because someone asked my doubt before me…” 

It is worth mentioning that there were no substantial differences between the 
students belonging to different categories, according to the pretest. An 
analysis of results in relation to the initial categorization, suggests that pre 
conditioned ideas did not influenced the acquisition of new knowledge. There 
were no significant differences among the largest groups of students ranked in 
levels 1 and 4. 

CONCLUSIONS 

The failure of the students in understanding the concepts of calculation, more 
generally, and the definite integral, in particular, is one of the most worrying 
problems in the learning of Mathematical Analysis, in the first year of 
Engineering, as this hinders the understanding and resolution of problems of 
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application. The way to search for the causality of this failure led us to raise 
the need for a change in the point of view. This is a change in the processes 
and representations through which students learn, in this case, the concept of 
integral.  

Focusing our attention on the problem how students can understand more 
deeply the concepts using tools and technology, we can conclude that the 
recent evolution of digital materials leads to devote a specific interest to the 
change of activities induced by virtual learning environments which allow 
new forms of collaboration between students, and between teachers and 
students. Besides, the use of the computer is a valuable strategy with the aim 
of achieving significant learning. While learning the concept of definite 
integral, the computer facilitates making the important amount of calculations 
and displays the successive approximations, contributing to the concept of 
area under the curve. In that sense, the use of a predesigned package software 
allowed students to view the alignment between the smaller and smaller 
geometric rectangles and curvilinear area to be determined.  

The carrying out of the activities required the use of the predesigned package 
software, specifically adapted to the needs of the experience. Students had to 
make numerous graphs, edit their guesses, propose new solutions, test, and 
analyze retrospectively the achieved results. Dynamic graph was valued for 
making student work with figures easier, faster and more accurate, and 
consequently for removing drawing demands which distract them from the 
key point of a problem. Various aspects of making properties apprehensible to 
students through dynamic manipulation were expressed in CERME V 
Plenaries (see: Ruthven, 2007). “When a dynamic figure is dragged, students 

can see it changing and see what happens, so that properties become obvious 

and students see them immediately” (Ruthven,2007: 56). In that sense, 
technology is seen as supporting teaching approaches based on guiding 
students to discover properties for themselves. We agree on suggesting that 
teachers might guide students towards an intended mathematical conclusion, 
but students could find out how it works without us telling them so that they 
could feel they are discovering for themselves and could get a better 
undestanding. 
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Figure 1. Capture screen from the predesigned software about 
conceptualization of definite integral. Estimation of the area of y=x2 using 10 
subdivisions and 100 subdivisions, 0 ! x ! 1 

 

number of 

subdivisions 
default sums excess sums 

4 0,219 0,467 

10 0,285 0,385 

20 0,308 0,358 

30 0,316 0,35 

40 0,321 0,346 

50 0,323 0,343 

60 0,325 0,342 

70 0,326 0,34 

80 0,327 0,339 

90 0,328 0,339 

100 0,327 0,337 

 
Table 1. Sums for different 
subintervals increasingly small 
under the curve y= x2 on the 
interval [0,1] 
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Graphic 1. the series which represents the sum 
of the approach rectangles, default sums are 
in blue and excess sums are in pink. 
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Figure 3. Captured screen from the predesigned software about Solid of 
revolution. 

Area between the functions y=x and y=x2 , and the solid of revolution that is 
generated to rotate on the x-axis and the vertical axis. 
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LINKING GEOMETRY AND ALGEBRA:  

ENGLISH AND TAIWANESE UPPER SECONDARY 
TEACHERS’ APPROACHES TO THE USE OF GEOGEBRA 

Yu-Wen Allison Lu  

Queens’ College, Faculty of Education, University of Cambridge, UK 

The idea of the integration of dynamic geometry and computer algebra and 

the implementation of open-source software in mathematics teaching 

underpins new approaches to studying teachers’ thinking and technological 

artefacts in use. This study opens by reviewing the evolving design of dynamic 

geometry and computer algebra; teachers’ conceptions and pioneering uses of 

GeoGebra; and early sketches of GeoGebra mainstream use in teaching 

practices. This research has investigated English and Taiwanese upper-

secondary teachers’ attitudes and practices regarding GeoGebra. More 

specifically, it has sought to gain an understanding of the teachers’ 

conceptions of technology and how their pedagogies incorporate dynamic 

manipulation with GeoGebra into mathematical discourse.  

INTRODUCTION 

Algebra and geometry are two core strands of mathematics curricula 
throughout the world and are considered the ‘two formal pillars’ of 
mathematics (Atiyah, 2001). It is therefore not surprising that they have been 
specifically targeted by the field of technology (Sangwin, 2007). Many 
researchers consider mathematics education as one of the earlier education 
fields to introduce technology as an assistant tool in classrooms (Papert, 1980; 
Noss and Hoyles, 1996).  

The major application of technology in mathematics education is the 
integration of mathematical software in teaching practices. In respect of 
geometry, the most widely used computer applications, known as Dynamic 
Geometry Software (DGS) and include, Cabri-géomètre and Geometer’s 
Sketchpad (GSP), etc. One important feature of DGS is the drag mode, 
encouraging interactions between teachers, students and mathematics (Jones, 
2000). The drag mode can be used to explore and visualise geometrical 
properties by dragging objects and transforming figures in ways beyond the 
scope of traditional paper-and-pencil geometry (Laborde, 2001; Ruthven, 
2005). DGS also has options to visualise the paths of objects as they move. 
For algebra, the most widely used applications are known as Computer 
Algebra Systems (CAS) and include programmes such as Mathematica, Maple 
and Derive. Some graphical visualisation and symbolic representations of 
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algebraic expressions are implemented in CAS. Using the metaphor of the two 
‘formal pillars’ of mathematics, geometry and algebra are afforded prominent 
positions especially at the secondary level (Hohenwarter & Jones, 2007). 
However, the connection between geometry and algebra, namely ‘the beam 
connecting the two pillars’, is apparently missing, as evident that in some 
countries geometry and algebra are entirely separate in their curricula (ibid). 
Ruthven (2008) researches the specific examples of computer algebra and 
dynamic geometry, and highlights ‘three important dimensions- interpretative 
flexibility, instrumental evolution and institutional adoption-of the 
incorporation of new technologies into educational practices’. Although 
research into current technology use of computer algebra and dynamic 
geometry in teaching practices separate each sphere into distinct areas for 
study; I argue against this separation as there are areas overlapping algebra 
and geometry such as functions and graphs (Dubinsky and Harel, 1992). 
Examining both together has great educational implications and the 
connections between the two should not be ignored (Edwards & Jones, 2006). 
However, there is a gap in the literature dealing with this linkage between both 
fields and the use of technology. Despite an awareness of the need for a 
combination of DGS and CAS (Hohenwarter & Fush, 2004), software 
designers struggle to combine them as there are completely different 
constructs in software design. GeoGebra could be seen as pioneering software, 
although whether or not it is successful in linking DGS and CAS still needs 
research as the supporting evidence is limited at present. 

Linking Geometry and Algebra 

Since CAS and DGS are two completely different mathematical constructs, 
the ‘beam’ of the two pillars is weakly constructed within current 
mathematical software. Historically, CAS programmes have mainly provided 
algebraic and numerical computations while DGS have provided graphical 
and dynamic demonstrations. Hohenwarter and Jones (2007) point out that 
‘forms of CAS have begun to include graphing capabilities in order to help to 
visualise mathematics; likewise, DGS have begun to include elements of 
algebraic symbolisation in order to be useful for a wider range of 
mathematical problems’(p. 127) . In recent years, the need to integrate CAS 
and DGS has become apparent as Schumann and Green (2000: 337) claim that 
‘[t]here is a need for further software development to provide a single package 
combining the desired features [of DGS and CAS]’. The recently published 
software GeoGebra by Markus Hohenwater (2004) explicitly links the two (as 
evidenced by the name Geometry and alGebra). This integration aims to 
provide unprecedented opportunities for mathematics education (Sangwin, 
2007). GeoGebra affords a bidirectional combination of geometry and algebra 
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that differs from earlier software forms. The bidirectional combination means 
that, for instance, by typing in an equation in the algebra window, the graph of 
the equation will be shown in the dynamic and graphic window. Similarly, by 
dragging the graph, the equation changes accordingly (Hohenwarter and 
Fuchs, 2004). A closer connection between the visualisation capabilities of 
CAS and the dynamic changeability of DGS is therefore offered by GeoGebra 
(ibid). 

The Case of GeoGebra 

One problem is that most mathematical software in mainstream use is 
commercial, which means the availability of software is subject to the school 
or student’s finances. Therefore, some teachers or students who cannot afford 
to buy commercial software would search for free software for their own 
purposes. There is positive potentiality and improvement offered by 
encouraging a collaborative community of open-source software users and 
voluntary software developers (Suzuki, 2006). GeoGebra is one of these open-
source softwares. 

My rationale behind carrying out this inquiry into GeoGebra is not only due to 
its being open-source software with freely available support and online 
materials, but also due to its unique capacity to integrate geometry and 
algebra. The significance of this research is not only the investigation of how 
GeoGebra usage can be incorporated into the teaching of either geometry or 
algebra alone, but more importantly, how the teaching of geometry and 
algebra can be linked using GeoGebra, thus contributing to a better 
understanding for students of their interrelationships. Studies such as this one 
will contribute to knowledge of GeoGebra-mediated teaching and the future 
pedagogical development.  

Comparative Study 

Recent research has indicated that culture influences the ways that teachers 
behave and inter-culture differences appears to be stronger than intra-culture 
differences (Schmidt et al., 1996; Givvin et al., 2005; Andrews, 2007). In 
particular, comparing eastern and western traditions with their respective 
Confucian and Socratic underpinnings can be enlightening as there are great 
differences in teacher beliefs and practices (Leung, 1995; Tweed and Lehman, 
2002; Andrews, 2007). There is little comparative research of technology use 
in mathematics education, especially between Eastern Asian and Western 
countries (Graf. and Leung, 2001). Consequently, seeing how culture 
influences technology-mediated mathematics teaching is a pertinent issue.  
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There are large-scale quantitative studies such as TIMSS and PISA and small-
scale qualitative studies. These studies highlight both similarities and 
differences between mathematics education in different cultural contexts in 
depth and in breadth. Large scale surveys are limited, however, by the fact that 
they often compare students’ academic achievements without taking cultural 
and social factors into consideration (Prais, 2007). Quantitative studies such as 
TIMSS have also been reproached for their uncritical evaluation and for 
promoting globalisation over curricular and cultural diversity (Andrews, 
2007). In contrast, small qualitative studies acknowledge cultural differences 
without attempts for generalisation. Particularly, when comparing East Asian 
and Western traditions with their respective Confucian and Socratic 
underpinnings, there is a significant difference between what are classically 
designed with the educational traditions (Leung, 1995; Kaiser et al., 2005; 
Tweed and Lehman, 2002). In particular, Kaiser et al. (2005) proposed a 
framework analysing East Asian and West European cultural traditions in 
mathematics education. The framework by Kaiser et al. (2005) is adapted 
partially in terms of teaching styles as I undertake a small-scale qualitative 
study in countries that exemplify East and West with a focus on teachers’ 
perspective and their use of technology in mathematics teaching. The Eastern 
country chosen is Taiwan since it is viewed as ‘the one most often cited 
admiringly by educators in the West for the level of its students’ educational 
achievements (Broadfoot, et al., 2000: 13)’ and a high mathematics 
performing country in international comparative studies such as TIMSS and 
PISA (Mullis, 2003; OECD, 2004; 2007). The Western country chosen for the 
study is England due to its contrasting educational system (Broadfoot et al., 
2000). A cross-cultural study between Taiwan and England helps obtain a 
sense of the commonalities and discrepancies of teachers’ conceptions and 
practices in relation to GeoGebra use. I have chosen to research at the upper-
secondary level (students aged 15-18) as this level is less researched but is a 
crucial step for bridging students’ secondary mathematics learning and higher 
education. Therefore, the overarching research questions are: (1)What are the 
upper-secondary mathematics teachers’ conceptions of technology in relation 
to GeoGebra in England and Taiwan? (2) In what manner is GeoGebra used 
for the teaching of geometry and algebra by Taiwanese and English teachers? 
(3)How are the teachers’ conceptions of technology and GeoGebra related to 
their teaching practices in both countries? 

METHDOLOGY 

Since there is little research into GeoGebra usage to date, this study is 
exploratory (Marshall and Rossman, 2006; Creswell, 2007). In brief, 
exploratory and multiple-case studies are my chosen methodology as the 



 

CERME 6 315 WG7 

 

research focuses on this particular mathematical software, requiring specific 
teachers who utilise GeoGebra to teach upper-secondary level mathematics. 
Comparing and contrasting cases of teachers with interest in using GeoGebra 
from Taiwan and England provide a comprehensive understanding of how 
GeoGebra can be used in two very different cultural traditions, pedagogies and 
curricula. 

I define mathematics teaching with the use of GeoGebra in Taiwan and 
England as the two main units of analysis. These have embedded two cases of 
teachers who use this software. Moreover, within the units, four cases of 
English and Taiwanese teachers are studied to obtain evidence of their views 
on GeoGebra teaching practices. To achieve the comparability between cases 
and units, pre-determined themes: teacher background, views on technology 

and GeoGebra, software comparisons and ways of using GeoGebra have been 
set for research design and data collection. A complete set of data was 
collected from four school visits. All of the interviews were audio and video-
recorded, lasted for approximately an hour each and took place in classrooms 
using either a laptop or a computer connected to an interactive whiteboard. 
During the interviews the teachers demonstrated ways they utilised the 
software. The interview data were collated and summarised for each of the 
four cases. 

THE CASES 

Jay 

Jay has been teaching mathematics for twelve years in two senior high schools 
in Taiwan (students aged 15 -18). Jay’s views about the incorporation of 
technology into teaching practices are generally more negative than positive. 
He inferred that both students and teachers viewed computers as a tool for 
entertainment rather than a learning or teaching tool. On the contrary, he held 
positive attitudes only with regard to GeoGebra. He claimed GeoGebra to be a 
convenient tool, which can be used for demonstrations, checking and 
visualisation as well as research. He mentioned that GeoGebra provides 
powerful capabilities that other software packages cannot offer: ‘It is actually 
very good, especially when you want to do addition and subtraction in the grid 
coordinate system.’ In general, Jay was discouraged by the current educational 
environment regarding technology and both students’ and teachers’ attitudes 
toward mathematical software in Taiwan. He also asserted that support from 
mathematical software was limited as human brains do the logical deduction. 
However, he emphasised that GeoGebra provides quality functionalities that 
encouraged his use of this software in his teaching practice. The salient 
categories emerged from the data are listed as follows: 



 

CERME 6 316 WG7 

 

Tool use Graphing, calculations, visualisation, demonstration, 
dragging, checking, test and verify, teaching and research 

Mathematics 
topics 

Cartesian coordinate systems, both algebra and geometry 

Teaching style Textbook-oriented 

Infrastructure Laptop demonstration in the classroom 

Li 

Li has thirteen years of teaching experience at the upper-secondary level in 
Taiwan. Since his first degree was in applied mathematics, he gained an 
interest in IT during his undergraduate study. He was enthusiastic about new 
technologies and volunteered to translate the Traditional Chinese version of 
GeoGebra. Moreover, he had been creative in using different software 
packages, free software in particular, and trying to use a combination of 
different open-source software to make teaching materials. He has written 
some journal articles comparing new, open-source software packages detailing 
how they might be incorporated into mathematics teaching for Taiwanese 
teachers. In addition, he conducted GeoGebra training courses and workshops 
for teachers in senior high schools in Taipei. He had also set up his website 
and school website and uploaded his up-to-date GeoGebra materials and step-
by-step tutorial materials for students or teachers. Li had a similar opinion to 
Jay on students’ and teachers’ attitudes towards the use of computers. 
However, he was positive that exploiting GeoGebra can change students’ 
attitude towards mathematics. Some of his designed teaching materials and 
tutoring examples of using GeoGebra in solving examination problems were 
displayed on the websites. He also encouraged students to use the websites for 
reference and discussion. The salient categories are listed as: 

Tool use Graphing, calculations, demonstration, problem-solving, 
revision, investigation, and interaction  

Mathematics topics Geometrical topics and algebraic calculations 

Teaching style Curriculum-based, textbook-oriented and exam-driven, 
self-developed teaching materials and website with 
GeoGebra 

Infrastructure Home, IT room or computer and projector in classroom 

 Richard 

Richard has taught secondary and A-level mathematics for twelve years in 
England. He is skilled in computer programming and is in charge of the school 
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mathematics website where a combination of GeoGebra, Yacas and JavaScript 
are used for developing online mathematics materials and tests. He designed a 
piece of DGS and used it to teach before starting to use GeoGebra. Previously, 
he was working as a software developer and cooperated with the NCETM 
GeoGebra project. Richard has an ambivalent view of GeoGebra. He 
expressed that he was not convinced that GeoGebra links geometry and 
algebra but then stated that: ‘it does the connection between algebra and 
geometry much better than other programmes - anywhere you can enter a 
number you can also enter a formula’. He asserted that GeoGebra had changed 
the way he taught as he had been taking students to IT rooms more often and 
some students liked the revision with GeoGebra as it sped up some processes 
of preparation for examinations and for accuracy. He stressed ‘the fact that 
you can animate any variable by turning it into a slider is a very powerful 
feature’. The salient categories emerged from the data are listed as follows: 

Tool use Graphing, calculations, demonstration, revision, student 
activities, investigation with the slider 

Mathematics topics Mainly geometrical topics, gradients of a curve and 
transformations  

Teaching style Activity-based, a combination system of paper-and-
pencil and computer environments 

Infrastructure Home, IT room or computer and projector in classroom 

Tyler 

Tyler has taught mathematics to 11-16 year olds in a college for twelve years. 
He has also acted as an AST1 supporting schools and as a part-time school 
consultant, cooperated with the NCETM GeoGebra project and hosted a 
GeoGebra training workshop at his college. Tyler’s utterances reflected a view 
of GeoGebra as an environment for exploring dynamic geometry rather than 
algebra. He viewed GeoGebra as a replacement to Cabri, which he used 
before GeoGebra. However, he mentioned that his experience with GeoGebra 
was approximately half a year, which meant that there were areas of using 
GeoGebra that were under-explored and underdeveloped, such as using 
GeoGebra in teaching algebra.  

Some criticisms about current usage of technology in schools were brought up 
in terms of the IT rooms and school websites. He described his intention to 
change the way his pupils work from being passive to actively involve in 
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learning through software. Moreover, he did not expect that students would 
not undertake much thinking in the IT room. In addition, some school 
mathematics websites have mathematics tests for pupils to log on to at home 
with their personal passwords which, in his view, allowed no room for 
discussion and interaction. He pointed out that GeoGebra is interactive and 
intuitive so he could set up diagrams and activities for students to interact with 
easily: ‘This is different. This is maths by interacting; this is maths by 
trying things out, by conjecturing, by having a go.’ He emphasised that 
GeoGebra could not only be used as a presentation tool by teachers but also as 
an investigation tool for pupils. An enthusiasm for GeoGebra was apparent in 
Tyler’s strategies of using GeoGebra in mathematics teaching.  

Overall, Tyler was reflective and explorative about different practices with 
GeoGebra, and eager to find out possible areas where GeoGebra could be 
useful in mathematics teaching.  He also drew a distinction between ‘knowing 

how’ to use it and ‘getting used to’ using it in relation with GeoGebra. This 
inferred that he acknowledged the differences between using GeoGebra and 
teaching with the use of GeoGebra. The salient categories emerged from the 
data are listed as follows: 

Tool use Demonstration, interaction, investigation, exploration, 
testing hypothesis, creation, projection capability and the 
slider 

Mathematics topics Mainly geometrical topics  

Teaching style A whole-class teaching activity 

Infrastructure Home, IT room or computer and projector in classroom 

FINDINGS  

Analysing the data thematically across the case studies revealed four salient 
dimensions in relation to GeoGebra-assisted teaching: educational tools, 
teacher transition, mathematical scope and infrastructural change. The 
findings are introduced in the following, which indicate that understanding the 
linkage between teachers’ conceptions and practices is crucial. Firstly, the 
teachers’ conceptions of GeoGebra seemed to be strongly rooted in their 
conceptions of the effectiveness and infrastructure of technology. The English 
teachers imbued a more positive attitude towards technology than their 
Taiwanese counterparts. However, teachers in both countries expressed 
favourable opinions regarding GeoGebra’s agreeable contribution to their 
teaching. Secondly, GeoGebra was commonly used as a tool for visualisation, 
demonstration and interaction of mathematical topics, whereas for algebraic 
topics it was rarely utilised in England. It appeared that the English teachers 
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associated GeoGebra primarily with geometric topics. Conversely, Taiwanese 
teachers worked with GeoGebra on both geometric and algebraic topics as 
they did not consider algebra and geometry to be necessarily separate; 
possibly as a result of the structure of Taiwanese curriculum and textbook-
oriented culture. Thirdly, there were three different environments where 
teachers engaged with GeoGebra: - preparation of teaching materials at home, 
presentation and interaction in classrooms and activities for pupil investigation 
in IT rooms.  Teacher transitions evolved from and were influenced by the 
infrastructure as they moved from preparation to presentation, incorporating 
interaction with pupils and finally encouraging investigation.  

In effect, GeoGebra can be implemented in upper-secondary mathematics 
teaching as a network of preparation, presentation, interaction and 
investigation whereby teachers mediate their practices with flexibility. Based 
on the findings above, I present the general schema of this thesis (Fig.1). 
Arguably, there is a conceptual change in accordance with infrastructural 
change when technology is introduced in mathematics teaching. Teachers are 
the first to encounter this re-conceptualisation of pedagogical practices. They 
not only experience changes in their conceptions but also modification of their 
practices when they experience the transition. This transition would possibly 
alter teachers’ choices of the mathematical scope and their uses of GeoGebra 
as an educational tool in light of their new pedagogical practices. 

 

 

Figure 1: The general schema of teachers’ conceptions and practices of 
GeoGebra 
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There are several areas with respect to the use of GeoGebra in Taiwan which 
are different from England. However, ascertaining the commonalities and 
differences of the use of GeoGebra between Taiwan and England is not 
particular easy as cultural influence is a complex issue. In addition, the 
presentation of four cases cannot offer a broad understanding or generalisation 
of what is happening in both countries. What this study offers is an 
exploration into teachers’ use GeoGebra in England differently from their 
Taiwanese counterparts according to their personal characteristic, conceptions 
and practices.  

There are three aspects generated from the data that could be seen 
significantly different between the cultures in England and Taiwan. Firstly, 
teachers’ attitudes towards technology in both countries varied. The 
participated Taiwanese teachers held negative conceptions of technology use 
for teaching practices, whereas the English teachers were positive about it not 
only because they were confident and comfortable about using ICT but also 
students seemed to have higher level of acceptance. Secondly, the Taiwanese 
teachers experienced greater difficulties pertaining to infrastructure as the 
classroom settings were not particularly designed for technology use in 
Taiwan whilst the English classroom settings implemented interactive 
whiteboards and projectors which offered convenience for teachers. Finally, in 
terms of pedagogy, the Taiwanese teachers tended to follow a curriculum 
based teaching strategy and mostly related GeoGebra exercises to textbooks; 
therefore, GeoGebra was used specifically for assistance of visualisation of 
textbooks examples.  Again, the English teachers appeared to be more creative 
and flexible in choosing their teaching methods. As the Taiwanese educational 
system has an examination-driven culture, there are several areas being used 
extensively such as problem solving for university entrance examinations and 
proof of theorems as well as revision for examination preparation. In contrast 
with Taiwan, the English educational system has a focus on individual 
learning, therefore, there seemed to be a stress on students’ individual 
investigation and interaction with GeoGebra. 

Teachers’ practical elaboration of GeoGebra can be seen interrelated within 
the four dimensions. The infrastructure of ICT has a great impact on the ways 
in which teachers regard GeoGebra as an educational tool since if ICT 
facilities are not available or advanced, it would definitely influence the way 
teachers use it. Given ICT provision, teachers’ mathematical content 
knowledge and conceptions may affect their choices of mathematical topics 
utilising GeoGebra. Certainly, providing sufficient support for the use of 
GeoGebra, teachers might start experiencing changes in their behaviour with 
GeoGebra. This teacher transition will move them from beginners to advanced 
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users of GeoGebra as well as help them develop their pedagogical practices in 
teaching practices. In spite of these common dimensions between Taiwan and 
England, there are substantial discrepancies in technological artefacts and 
adaptation of curricular resources which underpin English and Taiwanese 
teachers’ decisions and practices with GeoGebra applications. These 
significant differences could be explained by the two opposed Eastern and 
Western cultural traditions. 

Despite the potentiality of GeoGebra, teachers have not fully discovered its 
capability to link geometry and algebra but acknowledged that it offers 
pervading possibility in teaching practices. As Markus Hohenwarter puts it, 
‘GeoGebra is free software because I believe education should be free. This 
philosophy makes it easy to convince teachers to give this tool a try, even if 
they haven’t used technology in their classrooms before’.   
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LEARNER ASSISTANCE BY WORKED EXAMPLE VIDEOS  
IN INTERACTIVE LEARNING ENVIRONMENTS   

Markus Mann 

Karl-Theodor-von-Dalberg-Gymnasium, Aschaffenburg 

With Worked Example Videos (WEVs) we present a new, innovative format for 

instructional material. These videos are on-screen recordings of expert solutions of 

geometrical tasks which are provided to learners within interactive learning 

environments. In this paper we report on a framework for the implementation of this 

format. We further expose some results of an empirical study we conducted with 

secondary school students. The students were supported by WEVs while working 

individually with a web-based learning environment on geometrical tasks. The results 

show that the format of WEVs has high potentials, especially to support low 

achieving learners. 

AIMS & BACKGROUND  

In our research project concerning students’ learning with interactive, web-based 
work sheets for geometry we developed an Interactive Learning Environment (ILE) 
with the focus on learner support by interactive videos. In the first phase of our study 
we analysed the usage and the acceptance of the ILE in a qualitative way. We 
discovered individual learning styles of students and found high acceptance and an 
intuitive usage of our environment (Mann & Ludwig, 2007; Mann, 2008).  

This paper reports on the second phase of our empirical studies. In this phase we 
wanted to quantify students’ learning outcomes after working with the ILE. Thus we 
were especially interested in the efficiency of example-based learning videos, the so 
called Worked Example Videos (WEVs). These videos demonstrate experts’ solutions 
and the solution processes of geometrical tasks. They are on-screen recordings of 
these processes and can be used in an interactive way.  

THEORETICAL FRAMEWORK 

The solution of a construction task is always a process that consists of a sequence of 
single construction steps. Such a process, where every step follows a previous one 
until the solution is found can perfectly be visualised by video, which is nothing else 
but a sequence of images. If such a solution is demonstrated by an expert it fits the 
idea of (animated) worked examples. Thus a WEV for learning with digital tools like 
DGEs is the screen recording of an expert’s solution of the task and provides 
instructional support to learners. These can use WEVs in an interactive way, namely 
they can use all functions of a media player like ‘play’, ‘pause’ or the search bar.  

Worked examples in general are considered to be successful in a number of empirical 
studies (Renkl, 2002). An explanation for positive learning outcomes by learning 
with worked examples is given by Sweller’s Cognitive Load Theory (Sweller, 1988; 
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Sweller, van Merrienboer & Paas, 1998; Sweller, 2005). It explains the learning 
effects in terms of a reduction of extraneous load, an ineffective load of working 
memory: the delivery of worked examples can lower extraneous cognitive load, so 
that cognitive capacity can be used for meaningful learning (Renkl, 2002; Kirschner, 
2002). Reduced cognitive load enables learners to better construct schemata and 
automation. E.g. Tarmizi & Sweller (1988) show that worked examples are effective, 
when a learner’s attention is drawn to the aspects relevant for learning. This form of 
attention guiding reduces cognitive load: 

"On the other hand, extraneous cognitive load might be decreased by providing learners 
with informative examples of data and [...] by guiding their attention to relevant aspects 
of the simulation." (Bodemer & Ploetzner, 2004, p. 4) 

But worked examples are not effective in themselves. In an example-based learning 
environment it is important to activate the learners’ cognitive activities (Atkinson & 
Renkl, 2007). Besides positive learning outcomes it is remarkable that worked 
examples are a method that is preferred by learners (Renkl, 2005). 

Guidelines for Interactive Work Sheets 

"When the message is poorly designed, learners must engage in irrelevant or inefficient 
cognitive processing; when it is well designed, extraneous cognitive load is minimized." 
(Mayer, 2001, p. 50).  

The design of the ILE and its integrated Interactive Work Sheets is an outstanding 
factor for learning success. Though we propose five empirically based guidelines for 
the development of interactive, web-based work sheets for geometry according to 
results of research concerning learning from worked examples and learning with 
digital media (Mann 2008b). We formulated the following research based guidelines 
and developed our ILE according to these five principles:  

(G1) Reduce the interface and ensure that the ILE has elements the learner is familiar 
with; include an “Undo”-function. 

(G2) Provide feedback to learners for their self monitoring and performance control.  

(G3) Reduce extraneous load by offering learners support in form of worked 
examples. 

(G4) Increase germane load by activating meaningful cognitive processes, e.g. by 
offering a high degree of interactivity (Schulmeister, 2003).  

(G5) Support learners in their usage of the new ILE, especially in their tool usage, 
e.g. by offering animated demonstrations. 

A fundamental idea behind these guidelines is the stimulation of the active processing 
of information (Roy & Michelene, 2005). So it is found to be important to activate 
and stimulate learners’ cognitive activities to avoid superficial processing and to 
support meaningful learning (Atkinson & Renkl, 2007). Furthermore learners need 
free space to become cognitive active, but also need guidance that these activities 
lead to the construction of knowledge:  "Children seem to learn better when they are 
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active and when a teacher helps guide their activity in productive directions." (Mayer, 
2004, p. 16) 

 

Figure 1: Interactive Work Sheet (designed according to the guidelines) 

Besides guidance Heintz (2002) states that a reduced user interface and direct 
feedback is important and supports learners (guideline G1). Thus with the new kind 
of tool technical problems no longer appear and do not hinder the learning process. 
Moreover feedback enables students to work self directed with the ILE (Mann & 
Ludwig, 2007). In the frame of learning with Dynamic Geometry Environments 
Laborde et al. (2006) also stress the importance of feedback. According to these 
findings the Interactive Work Sheets we integrated in the ILE provide intelligent 
feedback to learners.  

Learning with Interactive Videos  

The focus of our research is set on learner support by WEVs. To help learners 
through animations and videos interactivity plays an important role (Riempp, 2000). 
By using interactive elements to control the video the learner can use this form of 
support in an individual way and it fosters self regulated learning (Salomon, 1994). 
McNeil & Nelson (1991) argue that learning with interactive videos is an effective 
form of acquisition of knowledge. Morrison et al. (2000) discuss, that learning with 
animations is highly effective in cases, where animations comprise additional 
information or interactive elements. In particular novices can profit when operations 
and effects are visualised (Salomon, 1994). Plaisant & Shneiderman (2005) argue that 
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animated demonstrations can be an alternative to active and practical help by experts. 
In their study Palmiter & Elkerton (1993) show that learners who are supported by 
animations, solve tasks faster and better than learners who get support in text form.  

We integrated videos in the form of WEVs in our environment to offer support for 
the solution of tasks and to help students to get along with the environment. The 
integration of videos and the implementation of the five guidelines result in an ILE 
which includes interactive work sheets and learner support by worked examples (cp. 
Figure 1).  

Research questions 

In our empirical study we were firstly interested in the efficiency of the ILE and of 
WEVs. We wanted to know if they are a suitable format for the acquisition of new 
content knowledge and for learning complex construction processes. Do learners who 
can use WEVs take more profit than learners who use Dynamic Worked Examples or 
who don’t use example based support at all? And in more detail: can especially low-
achieving learners profit from this format as this group often is at a disadvantage 
when learning with digital media. 

METHOD 

The participants of our study were 110 students from five German secondary schools 
(49 male, 61 female, 13 to 14 years of age). 69 of them had some low level 
experiences with Dynamic Geometry Software, 101 had watched videos on a PC 
before. The students were randomly assigned to one of the following subgroups:  

• Group 1: "Worked Example Video" (WEV). The members of this group could 
use WEVs, which showed experts’ solutions of construction processes. 

• Group 2: "Dynamic Worked Example" (DWE). Members of this group could 
make use of support in the form of dynamic constructions that showed them a 
worked example (without the construction process). 

• Group 3: "No Worked Example" (NWE). The members of this group did not use 
support by worked examples while working with the ILE. 

Prior knowledge of all participants was quantified by a Pre-test test consisting of 15 
content-related items. A Post-test with identical items was used to identify learning 
outcomes after the students’ work with the environment. Additional data was 
collected by two questionnaires: a first one was used to get information about the 
participants’ ICT competences; with the second questionnaire we asked for students’ 
attitudes towards the ILE and its components.  

The intervention was accomplished in regular classroom situations. Students of five 
different classes worked with the ILE in their regular math lessons in a computer 
room that was familiar to them. The introduction to the treatment and to the ILE was 
very short. So the students only got some general information and the advice to look 
for help (if needed) inside the ILE. 
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To measure the efficiency of the different kinds of worked example based learner 
assistance we calculated the increase from Pre- to Post-test. As every item was rated 
with “1” (correct) or “0” (false) the difference between both tests could be divided 
the number of items to get the relative increase of knowledge. The test problems are 
concerned with secondary school geometry. Five of the items are construction tasks, 
five variation tasks and five tasks are affiliated to other types of tasks. 

RESULTS  

The mean length of the intervention was 43.75 minutes (SD = 13.43). The learning 
periods were in a broad range between 19 minutes and 80 minutes. Figure 2 shows 
the results of all students and the results of the research groups in the Pre- and Post-
Test. The whole group of 110 students could gain almost ten percent of the test items 
(total difference d = 1.50 Items; 9.97%). This improvement is significant (t = 6.38 > 
2.36; p < .01) [1].  

 

Figure 2: Results of Pre- and Post-Tests 

The greatest improvement could be detected for group WEV and was 12.81% (1.92 
Items), which was highly significant (t = 4.13 > 2.43; p < .01). But there were also 
significant improvements within the other groups: group DWE could gain 9.66% (d = 
1.45 Items; t = 3.07 > 2.47; p < .01), group NWE gained 7.30% (d = 1.10 Items; t = 
3.96 > 2.42; p < .01). Although the improvement of group WEV was the most 
considerable, it was not significantly higher than the improvements of the other 
groups, consequently the kind of example based assistance was not found to be a 
significant factor.  
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Low-achieving vs. High-achieving learners 

To compare low- and high-achieving students we first split up the whole group into 
two subgroups by their performance in the Pre-tests: the high-achieving subgroup 
(L+) and the low-achieving subgroup (L-). The comparison of these two groups 
shows a significant difference in their improvements: while the high-achievers only 
gain 2.7% (+0.42 Items), the low-achieving learners could improve by 16.1% (+2.41 
Items). The difference between the subgroups is highly significant (t = 4.81 > 2.36; p 
< .01).  

  

  

Figure 3: Comparison of the low- and high-achivers of the research groups 

Even more striking is the difference between the subgroups of the first research group 
WEV. The better performing learners of this group (WEVL+) couldn’t even reach their 
Pre-test results in the Post-test (-0.06 Items, -0.4%) while the low-achieving subgroup 
(WEVL-) gained 23.7% (+3.55 Items). Again the difference between the subgroups is 
highly significant (t = 5.20 > 2.43; p < .01).  
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For group NEW the difference between the subgroups is significant, too (t = 3.54 > 
2.42; p < .01). In contrast the difference between the subgroups of group DWE is not 
significant (t = 0.90 < 2.48; p < .01).  

Research  L– L+ Difference 
Group N Mean SD  N Mean SD  

Overall 59 2.41 2.50  51  0.41 1.82 2.00 

WEV 21 3.55 2.26  18 -0.06 2.04 3.61 

DWE 16 1.81 2.90  13  1.00 1.91 0.81 

NWE 21 1.95 1.53  21  0.19 1.69 1.76 

Table 1: Mean and standard deviation of differences between Pre- and Post-Test 

Detailed analysis 

For a more detailed view on the results we could compose item groups out of similar 
tasks and analyse the test results. So we found that students when they had to work on 
tasks concerning “tangents” could highly benefit from WEVs (29.9%) whereas 
students without example based support only gained 11.9%. The difference in the 
increase between both groups is significant (t = 3.05 > 2.38, p < .01). 

Gender and ICT competences   

The result of the comparison of male and female students shows an improvement of 
1.45 Items (9.7%) for the male group and of 1.50 Items (10.0%) for female learners. 
These values are obviously nearly identical. The factor “Gender” does not have 
significant influence on learning outcomes (t = 0.11 < 2.36, p < .01, ns).  

We obtained a comparable result for the factor “ICT-Competences”. The comparison 
of the student group with high skills with the group with low competences did not 
show a significant difference (t = 0.09 < 2.38, p < .01, ns). 

DISCUSSION   

The above results show that students who worked with our ILE improved 
significantly. We ascribe their learning success to the ILE, especially to its interactive 
elements and the example based learner support. As all students benefit (as well 
students who did not have example based support) we see that the interactive 
elements of the environment foster students’ cognitive activities. But we also see that 
learners who use WEVs improve the most. So we state that WEVs have the potential 
to help students learn more or better.  

Our most striking result lies in the difference between low-achievers and high-
achievers. Especially when working with WEVs the low-achieving learners take 
much more benefit from the ILE which leads to greater increase of knowledge. This 
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result is contrary to earlier findings, where high-achieving learners can take more 
profit of learner support, because their metacognitive help seeking skills are on a 
higher level (Aleven & Koedinger, 2000). So we argue that WEVs are a format that is 
well suited for lower performing learners and for early learning phases, e.g. when 
learning new content. Moreover we state that our environment due to its design does 
not demand special or high ICT competences nor prefers learners of one gender. 

CONCLUSION   

With our project we could uncover some potentials of Worked Example Videos in 
special and of video-based learner support in general. WEVs have great potential to 
support learners in learning geometry. Especially low-achieving learners strongly 
benefit from this format. Future research work will have to look into three directions: 
(1) Do WEVs have potentials of which high-achieving learners can benefit? (2) Are 
the potentials of WEVs task- or domain-specific? (3) How can the integration of 
WEVs into regular classroom activities be facilitated? 

NOTES 

1. For the comparison of our three research groups we conducted a repeated measures ANOVA. The differences 

between subgroups and between Pre- and Post-test were tested by t tests. 
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The ReMath project is a European project that addresses the task of integrating 

theoretical frames on mathematical learning with digital technologies at the 

European level. A specific set of six dynamic digital artefacts (DDA) has been 

currently developed, reflecting the diversity of representations provided by ICT tools. 

Here we considerer the DDA Casyopée which was experimented in two different 

countries: Italy (Unisi team) and France (Didirem team). The paper focuses on the 

influence of the theoretical frames in the design of these Teaching Experiments. 

PROBLEMATIC OF THE REMATH PROJECT 

The project focuses on the primary and secondary school level giving a balanced 
attention to both teachers and students and incorporating a range of innovative and 
technologically enhanced traditional representations. Specific attention is given to 
cultural diversity: seven teams from four countries are involved in this project. The 
work is based on evidence from experience involving a cyclical process of  

a) developing six state-of-the-art dynamic digital artefacts for representing 
mathematics involving the domains of Algebra, Geometry and applied mathematics, 

b) developing scenarios in a common format for the use of these artefacts for 
educational added value, 

c) carrying out empirical research involving cross-experimentation (Cerulli et al. 
2008) in realistic educational contexts, aiming at enhancing our understanding of 
meaning-making through representing with digital media, in particular by providing 
new insight into means of using technologies to support learning, and into learning 
processes in relation to the use of technologies.  

Many recent studies highlight the existence of a multiplicity of theoretical 
frameworks for addressing those themes, and there is a shared increasing need of 
overcoming the resulting fragmentation (Artigue, 2008). This need is also felt within 
ReMath project, in which a variety of educational paradigms is present. The issue is 
addressed through the development of specific methodological tools, some of which 
are drawn and re-elaborated from the experience of TELMA project (Cerulli et al., 
2008).  

In this paper we present two different Teaching Experiments designed and carried out 
within ReMath project, respectively by Didirem team of the University Paris 7 
(France), and by Unisi team of the University of Siena (Italy). Both the TEs were 
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designed around the use of the software Casyopée (partly developed within the 
project). After describing the main features of Casyopée (exploited in the Teaching 
experiments) we will focus on the design of the Teaching Experiments, and we will 
compare them relying on the construct of Didactical Functionality (Cerulli, 
Pedemonte and Robotti, 2006). Though it would be interesting, a discussion on the 
actual implementation of the plans in classroom is out of the goals and of the 
possibilities of the present paper. 

THE CONSTRUCT OF DIDACTICAL FUNCTIONALITY 

The construct of Didactical Functionality is meant to provide a minimal common 
perspective, hopefully independent from specific theoretical frameworks, to frame 
diverse approaches (possibly depending on theoretical references) to the use of ICT 
tools in mathematics education, as well as the theoretical reflections regarding the 
actual use of ICT tools in given contexts. 

By Didactical Functionality of an ICT tool, one means the system constituted by 
three interrelated poles: a set of features of the tool, a set of educational goals, and the 
modalities of employing the specified features of the tool for achieving the envisaged 
educational goals. 

Trivially, through the construct of Didactical Functionality one intends to 
acknowledge that an ICT tool (or part of it) can be used in different ways for 
achieving different educational goals, that is one can design or identify different 
Didactical Functionalities of a given tool. In particular different theoretical 
perspectives can lead to designing different Didactical Functionalities of a given tool.   

THE DDA CASYOPEE 

The DDA Casyopée (Lagrange and Chiappini, 2007) is built as an open problem-
solving environment with the aim of giving students a means to work with algebraic 
representation, progressively acquiring control of the sense of algebraic expressions 
and of their transformations. Functions are the basic objects in Casyopée. Using this 
tool, students can explore and prove properties of functions. Casyopée takes into 
account the potentialities that Computer Algebra Systems offer to teaching and 
learning: going beyond mere numerical experimentation and accessing the algebraic 
notation; focusing on the purpose of algebraic transformations rather than on 
manipulation and connecting the algebraic activities. It is expected that students will 
make sense of algebraic representations by linking these with representations in these 
domains. See below a screen copy on the algebraic representations provided by 
Casyopée, it splits into two windows: a symbolic one and a graphical one. 
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Figure 1: the algebraic setting in Casyopée 

In the Remath project, Casyopée has been extended with a geometrical module. The 
aim is to explore what can be an interesting cooperation between a geometrical 
problem and its analytic treatment. The goal is not to develop a whole geometric 
dynamic environment but rather to see how geometric and analytic environments can 
articulate each other. For instance, a geometrical figure can be a domain to 
experiment with geometrical calculations. In the screenshot below, students can ask 
for the  measure of the area of the rectangle MNOP. Then an algebraic model can be 
built choosing one of the measures as an independent variable and the other as a 
dependant variable. Properties of the dependency can be conjectured and proved: 
they take sense both in the algebraic and in the geometrical settings. 
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Figure 2: the geometrical window in Casyopée 

The main specificity of Casyopée among other dynamic geometrical artefacts is to 

connect geometric and algebraic approaches. More precisely, the geometrical frame 

allows one to consider a geometric calculation and to export it in the algebraic 

environment. This transfer is allowed by choosing an adequate variable for the 

geometrical situation. At this point, Casyopée gives a feedback on the choice of this 

independent variable.  

The representations offered by Casyopée have been thought to be close to 

institutional ones. Casyopée allows students to work with the usual operations on 

functions such as algebraic operations, analytic calculations and graphical 

representations. The geometric environment offers commands usually available in 

other dynamic geometry environments such as creating fixed and free geometrical 

objects (points, lines, circles, curves) 

UNISI AND DIDIREM PEDAGOGICAL PLANS 

In the introduction we recalled that different specific methodological tools have been 

developed within ReMath for fostering the comparability of studies dealing with the 

use of ICT tools in mathematics education. A new conceptual model of the 

pedagogical scenario, called Pedagogical Plan (Bottino et al. 2007), is one of those 

methodological tools. A Pedagogical Plan has a recursive hierarchical structure: each 

pedagogical plan is conceived as a tree whose nodes and leaves are pedagogical plans 

themselves. Several components are attached to each pedagogical plan: including the 
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articulation of the educational goals, of the class activities, the specification of the 

features of the ICT tool used and how they are used, and of the rationale 

underpinning the whole pedagogical plan and of the theoretical frames inspiring it. A 

web-based tool (Pedagogical Plan Manager, PPM) has been also developed for 

supporting teams in designing their pedagogical plans.  

UNISI DIDIREM 

  

Figure 3: synthetic view of Unisi and Didirem pedagogical plans in the PPM 

Figure 3 displays a screenshot from the PPM, and it is meant to provide an overview 
of the structures of the pedagogical plans designed by the Unisi and Didirem teams. 

Details of the Unisi pedagogical plan 

The Unisi pedagogical plan is inspired by the Theory of Semiotic Mediation 
(Bartolini Bussi and Mariotti, 2008) drawn from a Vygotsijan perspective. This 
theory guided both the specification of the educational goals (starting from an 
analysis of Casyopée) and the overall structure of the planned activities.  

The designed educational goals are (a) to foster the evolution of students’ personal 
meanings towards the mathematical meanings of function as co-variation. That 
regards also the notions of variable, domain of a variable… and (b) to foster the 
evolution of students’ personal meanings towards mathematical meanings related to 
the algebraic modelling of geometrical situations.  

Students are expected to have already received some formal teaching on the notions 
of variable, function and graph of a function, and on its graphical representation in a 
Cartesian plane. Moreover, a common experience of researchers and teachers is that 
meanings related to those notions are rarely elaborated in depth. The aim is to 
mediate and weave those meanings in the more global frame of modelling. 
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Hence, the pedagogical plan is not meant to help students become able to use 
Casyopée for accomplishing given tasks, but instead to foster the students’ 
consciousness-raising of the mathematical meanings at stake. 

The whole pedagogical plan is structured in cycles entailing: students’ pair or small 
group activity with Casyopée for accomplishing a task, students’ personal rethinking 
of the class activity (through the request to students of producing individual reports 
on that activity), class discussion orchestrated by the teacher. 

The familiarization session is designed as a set of tasks aims at providing students 
with an overview of Cayopée features and guiding students to observe and reflect 
upon the "effects" of their interaction with the tool itself, e.g.: 

Could you choose a variable acceptable by Casyopée and click on the 
“validate” button? Describe how did the window “Geometric Calculation” 
change after clicking on the button. Which new button appeared? 

Besides familiarization, the designed activities with Casyopée consist of coping with 
“complex” optimization problems formulated in a geometrical setting and posed in 
generic term, e.g.: 

Given a triangle, what is the maximum value of the area of a rectangle 
inscribed in the triangle? Find a rectangle whose area has the maximum 
possible value. 

The aim is to elaborate on those problems so to reveal and unravel the complexity 
and put into evidence step by step the specific mathematical meanings at stake. 

According to the designed pedagogical plan, the teacher plays the delicate role of 
guiding students to unravel such complexity and to make the targeted mathematical 
meanings emerge. The main tool for the teacher to achieve this objective, is the 
orchestration of the class discussions. The development of a class discussion cannot 
be completely foreseen a priori, it should be designed starting from the analysis of 
students’ actual activity with Casyopée and of the reports they produce, and it would 
still depend on extemporary stimuli. Nevertheless in the design Unisi team tried to 
anticipate possible development of the pedagogical plan and to plan some kind of 
possible canvas for the teachers for managing class discussions. 

The pedagogical plan is intended for scientific high schools or technical institutes, 
grade 12 or 13, and can be implemented over approximately 11 school hours. 

Details of the Didirem pedagogical plan 

The Didirem pedagogical plan aims to help students construct or enrich knowledge in 
the following areas: meaning of functions as algebraic objects and meaning of 
functions as means to model a co variation in geometric and algebraic settings. It is 
intended for scientific high schools grade 11 or 12 and has been implemented in 
ordinary classes during approximately 10 school hours. It is inspired both by the 
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Instrumental Approach (Artigue, 2002), the Theory of Situation (Brousseau, 1997) 
and the Theory of Anthropologic Didactic (Chevallard, 1999). 

Specific importance is given to the construction of tasks with an adidactical potential, 
where students can choose different variables for exploring functional 
dependencies, and to the connection between algebra and geometry. This connection 
is supported in Casyopée by geometric expressions that allow expressing magnitudes 
in a symbolic language mixing geometry and algebra.  

The pedagogical plan is built around three main types of tasks: 

- First session: finding target quadratic functions by animating parameters (five 
different tasks according to the semiotic forms used for these functions): 

Lesson 1: Introducing associated functions (a function g is associated to a 
function f if it is defined by a formula like g(x)=af(x)+b or f(ax+b) or similar) 

Lesson 2: Target Functions (functions that can be graphed but whose 
expression is not known; each student have to guess the function graphed by 
his/her partner) 

Lesson 3: Different expressions of quadratic functions 

So students should consolidate: the meaning of variable, the distinction between 
variable and parameter, the meaning of function of one variable with several registers 
of semiotic representation and the fact that a same function may have several 
algebraic expressions. The new notion of associated function is worked-out during 
this session. 

- Second session: creating a geometrical calculus as a model of a geometrical 
situation to solve a problem of relationships between areas, manipulation to 
experiment co variation between two geometrical variables: 

Lesson 4: To divide a triangle in pieces of fixed area 

Lesson 5: Application; dividing a rectangle into figures of fixed area 

This way students can enhance their knowledge on co variation and develop the 
ability to experiment and anticipate in a dynamic geometrical situation, and the 
ability to model a geometric situation through geometric calculations.  

- Third session: creating a function as a model of a geometrical situation to solve an 
optimization problem. 

Lesson 6: solving a problem of optimisation in geometric settings by way of 
algebraic modelling. 
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Figure 4: statement of the session 3 in Didirem pedagogical plan 

This problem allows both to reinvest abilities to use the DDA, previous knowledge on 
associated functions and to introduce the notion of optimum in a geometrical 
situation. 

COMPARISON OF THE UNISI AND DIDIREM APPROACHES USING THE 
CONSTRUCT OF DIDACTICAL FUNCTIONALITY 

The two pedagogical plans, described in the previous sections, evidently share some 
characteristics but also have apparent deep differences. In this section we use the 
frame provided by the construct of Didactical Functionality to develop a more 
systematic comparison between the two pedagogical plans.  

Tool Features 

The two pedagogical plans are not generally centred on the use of the same DDA, but 
more specifically on the use of the same DDA features. In fact both exploit especially  

(a) features of  the dynamic geometry environment: the commands for creating 
fixed, free or constrained points, for dragging free or bonded points, for 
creating points with parametric coordinates, and the corresponding feedbacks 
of the DDA; 

(b) features of  the geometric calculation environment: the commands for creating 
“geometric calculation” associating numbers to geometrical objects, for 
choosing (independent) variables, for creating function between the selected 
variable and calculation, and the corresponding feedbacks; 

(c) features of the algebraic environment, including the commands for displaying 
and exploring graphs of functions, for creating and manipulating parameters, 
for manipulating the algebraic expressions of functions, and the corresponding 
feedbacks. 

Educational Goals 

Different educational goals are associated to the use of those features. More 
precisely, one can recognize that both pedagogical plans share a common focus on 
some mathematical notions: function (in particular, conceived as co-variation), 
variables (independent and dependent) and parameters. Moreover the two 
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pedagogical plans present, among other tasks, two optimization problems sharing the 
same mathematical core (see sections…). But, besides those surface similarities, there 
are profound differences. 

Other Unisi educational goals are to mediate and weave meanings, related to the 
notions of function, variable and parameter. With that respect the Unisi team 
assumes, on the one hand, that those notions are familiar for students, and, on the 
other hand, that those notions are not elaborated in depth. Hence the Unisi 
pedagogical plan aims at helping students gain a deeper consciousness of the 
mathematical meanings at stake and re-appropriate them in the more global frame of 
modelling. In addition the Unisi objective includes the shared and decontextualized 
formulation of the different mathematical notions in focus.  

The Didirem objectives are mainly to use potentialities of representations offered by 
Casyopée to introduce some new mathematical knowledge. This knowledge has been 
chosen for two main reasons: its affordance to the French curriculum and the 
importance to be studied in several frames of representations.  

Modalities of employment 

In accordance with the different objectives and the different pedagogical culture, the 
modalities of use are different as well. 

The Unisi pedagogical plan has an iterative structure. Students’ activity with 
Casyopée alternates with class discussions, after each session students are required to 
produce individual reports on the performed activities. This structure is meant to 
foster students’ generation of personal meanings linked to the use of the DDA and 
their evolution towards the targeted mathematical meanings together with the 
students’ consciousness-raising of the mathematical meanings at stake. That process 
is constantly fuelled by the teacher, whose role is crucial. Accordingly the teacher’s 
role is explicitly taken into account in the design of the pedagogical plan, which 
provides with hints for the possible actions. The tasks used are optimization problems 
set in a geometrical frame. Their solution and the reflection on these solutions are 
fundamental steps towards the achievement of the designed educational goals. Also 
the familiarization with the DDA has to be considered within that perspective: as 
already mentioned, it aims at making students observe and reflect upon the "effects" 
of their interaction with the DDA itself. Ad hoc tasks are designed for that purpose. 

Instead, the Didirem team pays specific attention to a progressive use of the DDA 
combining artefact and mathematical knowledge. Indeed, students work only in the 
algebraic window during section 1, then only in the geometrical windows in section2; 
finally section 3 gives an opportunity to reinvests the knowledge in the two 
environments. Moreover, all the tasks proposed are mathematical ones and are 
elaborated in order to allow students make progress alone working on the problem 
and to construct their new knowledge thanks the feedbacks. 
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CONCLUSION 

Those differences can be strongly related with the different theoretical perspectives 
adopted by the two teams.  

The Unisi team has mainly structured its pedagogical plan according to the Theory of 
Semiotic Mediation which inspired both the specification of the educational goals and 
the organization of the activities in iterative cycles. In particular the Theory of 
Semiotic Mediation led the Unisi team to devote attention towards the design of the 
teacher’s action in the pedagogical plan. In fact, the teacher plays a crucial role 
throughout the whole pedagogical plan, especially for fostering the evolution of 
students’ personal meanings towards the targeted mathematical meanings and 
facilitating the students’ consciousness-raising of those mathematical meanings.  

Instead, the Didirem team splits its theoretical approach into several theoretical 
frames which shape their pedagogical plan: the Instrumental Approach (Artigue, 
2002), the theory of Situation (Brousseau, 1997) and at last the theory of 
anthropologic didactic (Chevallard, 1999). The first frame aims to go further than a 
simple familiarization with the DDA and to help the students constructing a 
mathematical instrument. This process goes hand in hand with the learning process. 
The last optimization problem is used to evaluate the progress of this process. The 
process is accurately designed through a careful choice of mathematical tasks, with 
an adidactical potential, whereas the definition of the teacher's actions and role 
escapes the design of the PP. Finally, the TAD is called upon to manage instrumental 
distance between institutional and instrumental knowledge.  

No doubt that these approaches are complementary. Each team might benefit from 
this collective work to improve its pedagogical plan in the future. For instance, the 
Didirem team plans to pay more attention to the teacher’s role during the 
pedagogical plan conception. Nevertheless, the objective is not to elaborate a wide 
common consensual theoretical frame, but rather to go in depth in the clarification of 
didactical functionalities, in a shared language. 
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