Le plus grand produit
Lien vers la ressource (Décompresser le zip et lancer le fichier plgrprge.pdf)
Thème mathématique
Nombres entiers - Arithmétique
Auteur
DREAM (Démarche de recherche pour l'enseignement et l'apprentissage des mathématiques) - Institut Français de l'Education - ENS de Lyon
Type
Proposition de problème ouvert pouvant être abordé à partir du cycle 3 et courant jusqu'au lycée consistant, par la mise en recherche des élèves, à l'étude des nombres entiers et de leurs propriétés.
Apports essentiels d'un problème ouvert
Les problèmes ouverts ou les « problèmes pour chercher » sont une façon différente d’envisager l’apprentissage et l’enseignement des mathématiques dans le cours ordinaire de la classe. Ils permettent de mettre en évidence et en pratique les ressorts fournis par la dimension expérimentale de l’activité mathématique sur des connaissances mathématiques en lien avec les programmes à différents niveaux d’enseignement (cycle 3, cycle 4, lycée) ; participant des « démarches d’investigation » les problèmes ouverts redonnent du sens aux mathématiques en interrogeant leur pratique en classe.
Remarque pour le professeur
En general, une seance de recherche de probleme en classe comprend quatre phases :
-
La presentation du probleme et la recherche individuelle : 10 minutes environ.
-
La recherche en groupes de 3 ou 4 eleves : 50 minutes environ (dont la rédaction d'un document pouvant être exposé à la classe, affiche, transparent, document sur ordinateur ou tablette,...).
-
La mise en commun : 30 minutes environ
-
La synthese par le professeur et les élèves.
D'autres dispositifs peuvent être envisagés, mais le temps de recherche et d'exploration doit être suffisamment long pour que les élèves puissent rentrer dans une véritable recherche du problème.
Résumé
Ce problème de recherche fait travailler des compétences liées a l'activité de résolution de problème proprement dite (savoir mettre en oeuvre une démarche scientifique, savoir oser, réaliser des essais avec ou sans outils, dégager des sous-problemes, changer de cadres, conjecturer, se poser le probleme de la preuve, de la démonstration... Concernant les objets mathématiques travaillés, plusieurs sont des objets que l'on peut estimer acquis des le début du cycle 4, mais certains types de raisonnements permettent d'envisager la mise en oeuvre de cette situation à tous les niveaux du collège, voire au dela. En particulier, ce problème peut être utilisé tout au long du cycle 4 du collège.
Cette ressource est un chapitre du cédérom EXPRIME
Lien vers la ressource Décompresser le zip et lancer le fichier plgrprge.pdf